991 resultados para Transport-equation
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
It has been suggested that a solution to the transport equation which includes anisotropic scattering can be approximated by the solution to a telegrapher's equation [A.J. Ishimaru, Appl. Opt. 28, 2210 (1989)]. We show that in one dimension the telegrapher's equation furnishes an exact solution to the transport equation. In two dimensions, we show that, since the solution can become negative, the telegrapher's equation will not furnish a usable approximation. A comparison between simulated data in three dimensions indicates that the solution to the telegrapher's equation is a good approximation to that of the full transport equation at the times at which the diffusion equation furnishes an equally good approximation.
Resumo:
Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014.
Resumo:
Trabalho apresentado no 37th Conference on Stochastic Processes and their Applications - July 28 - August 01, 2014 -Universidad de Buenos Aires
Resumo:
In this work we propose a new image inpainting technique that combines texture synthesis, anisotropic diffusion, transport equation and a new sampling mechanism designed to alleviate the computational burden of the inpainting process. Given an image to be inpainted, anisotropic diffusion is initially applied to generate a cartoon image. A block-based inpainting approach is then applied so that to combine the cartoon image and a measure based on transport equation that dictates the priority on which pixels are filled. A sampling region is then defined dynamically so as to hold the propagation of the edges towards image structures while avoiding unnecessary searches during the completion process. Finally, a cartoon-based metric is computed to measure likeness between target and candidate blocks. Experimental results and comparisons against existing techniques attest the good performance and flexibility of our technique when dealing with real and synthetic images. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Quality control of medical radiological systems is of fundamental importance, and requires efficient methods for accurately determine the X-ray source spectrum. Straightforward measurements of X-ray spectra in standard operating require the limitation of the high photon flux, and therefore the measure has to be performed in a laboratory. However, the optimal quality control requires frequent in situ measurements which can be only performed using a portable system. To reduce the photon flux by 3 magnitude orders an indirect technique based on the scattering of the X-ray source beam by a solid target is used. The measured spectrum presents a lack of information because of transport and detection effects. The solution is then unfolded by solving the matrix equation that represents formally the scattering problem. However, the algebraic system is ill-conditioned and, therefore, it is not possible to obtain a satisfactory solution. Special strategies are necessary to circumvent the ill-conditioning. Numerous attempts have been done to solve this problem by using purely mathematical methods. In this thesis, a more physical point of view is adopted. The proposed method uses both the forward and the adjoint solutions of the Boltzmann transport equation to generate a better conditioned linear algebraic system. The procedure has been tested first on numerical experiments, giving excellent results. Then, the method has been verified with experimental measurements performed at the Operational Unit of Health Physics of the University of Bologna. The reconstructed spectra have been compared with the ones obtained with straightforward measurements, showing very good agreement.
Resumo:
"Prepared for U.S. Army Engineer District, Mobile."
Resumo:
"UNC-5014 (Volume A) Final Report covering the period 20 March 1961 - 31 May 1962."
Resumo:
The development of accurate modeling techniques for nanoscale thermal transport is an active area of research. Modern day nanoscale devices have length scales of tens of nanometers and are prone to overheating, which reduces device performance and lifetime. Therefore, accurate temperature profiles are needed to predict the reliability of nanoscale devices. The majority of models that appear in the literature obtain temperature profiles through the solution of the Boltzmann transport equation (BTE). These models often make simplifying assumptions about the nature of the quantized energy carriers (phonons). Additionally, most previous work has focused on simulation of planar two dimensional structures. This thesis presents a method which captures the full anisotropy of the Brillouin zone within a three dimensional solution to the BTE. The anisotropy of the Brillouin zone is captured by solving the BTE for all vibrational modes allowed by the Born Von-Karman boundary conditions.
Resumo:
The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
Optical pulse amplification in doped fibers is studied using an extended power transport equation for the coupled pulse spectral components. This equation includes the effects of gain saturation, gain dispersion, fiber dispersion, fiber nonlinearity, and amplified spontaneous emission. The new model is employed to study nonlinear gain-induced effects on the spectrotemporal characteristics of amplified subpicosecond pulses, in both the anomalous and the normal dispersion regimes.
Resumo:
Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.
Resumo:
Corrosion of steel bars embedded in concrete has a great influence on structural performance and durability of reinforced concrete. Chloride penetration is considered to be a primary cause of concrete deterioration in a vast majority of structures. Therefore, modelling of chloride penetration into concrete has become an area of great interest. The present work focuses on modelling of chloride transport in concrete. The differential macroscopic equations which govern the problem were derived from the equations at the microscopic scale by comparing the porous network with a single equivalent pore whose properties are the same as the average properties of the real porous network. The resulting transport model, which accounts for diffusion, migration, advection, chloride binding and chloride precipitation, consists of three coupled differential equations. The first equation models the transport of chloride ions, while the other two model the flow of the pore water and the heat transfer. In order to calibrate the model, the material parameters to determine experimentally were identified. The differential equations were solved by means of the finite element method. The classical Galerkin method was employed for the pore solution flow and the heat transfer equations, while the streamline upwind Petrov Galerkin method was adopted for the transport equation in order to avoid spatial instabilities for advection dominated problems. The finite element codes are implemented in Matlab® . To retrieve a good understanding of the influence of each variable and parameter, a detailed sensitivity analysis of the model was carried out. In order to determine the diffusive and hygroscopic properties of the studied concretes, as well as their chloride binding capacity, an experimental analysis was performed. The model was successfully compared with experimental data obtained from an offshore oil platform located in Brazil. Moreover, apart from the main objectives, numerous results were obtained throughout this work. For instance, several diffusion coefficients and the relation between them are discussed. It is shown how the electric field set up between the ionic species depends on the gradient of the species’ concentrations. Furthermore, the capillary hysteresis effects are illustrated by a proposed model, which leads to the determination of several microstructure properties, such as the pore size distribution and the tortuosity-connectivity of the porous network. El fenómeno de corrosión del acero de refuerzo embebido en el hormigón ha tenido gran influencia en estructuras de hormigón armado, tanto en su funcionalidad estructural como en aspectos de durabilidad. La penetración de cloruros en el interior del hormigón esta considerada como el factor principal en el deterioro de la gran mayoría de estructuras. Por lo tanto, la modelización numérica de dicho fenómeno ha generado gran interés. El presente trabajo de investigación se centra en la modelización del transporte de cloruros en el interior del hormigón. Las ecuaciones diferenciales que gobiernan los fenómenos a nivel macroscópico se deducen de ecuaciones planteadas a nivel microscópico. Esto se obtiene comparando la red porosa con un poro equivalente, el cual mantiene las mismas propiedades de la red porosa real. El modelo está constituido por tres ecuaciones diferenciales acopladas que consideran el transporte de cloruros, el flujo de la solución de poro y la transferencia de calor. Con estas ecuaciones se tienen en cuenta los fenómenos de difusión, migración, advección, combinación y precipitación de cloruros. El análisis llevado a cabo en este trabajo ha definido los parámetros necesarios para calibrar el modelo. De acuerdo con ellas, se seleccionaron los ensayos experimentales a realizar. Las ecuaciones diferenciales se resolvieron mediante el método de elementos finitos. El método clásico de Galerkin se empleó para solucionar las ecuaciones de flujo de la solución de poro y de la transferencia de calor, mientras que el método streamline upwind Petrov-Galerkin se utilizó para resolver la ecuación de transporte de cloruros con la finalidad de evitar inestabilidades espaciales en problemas con advección dominante. El código de elementos finitos está implementado en Matlab® . Con el objetivo de facilitar la comprensión del grado de influencia de cada variable y parámetro, se realizó un análisis de sensibilidad detallado del modelo. Se llevó a cabo una campaña experimental sobre los hormigones estudiados, con el objeto de obtener sus propiedades difusivas, químicas e higroscópicas. El modelo se contrastó con datos experimentales obtenidos en una plataforma petrolera localizada en Brasil. Las simulaciones numéricas corroboraron los datos experimentales. Además, durante el desarrollo de la investigación se obtuvieron resultados paralelos a los planteados inicialmente. Por ejemplo, el análisis de diferentes coeficientes de difusión y la relación entre ellos. Así como también se observó que el campo eléctrico establecido entre las especies iónicas disueltas en la solución de poro depende del gradiente de concentración de las mismas. Los efectos de histéresis capilar son expresados por el modelo propuesto, el cual conduce a la determinación de una serie de propiedades microscópicas, tales como la distribución del tamaño de poro, además de la tortuosidad y conectividad de la red porosa.
Resumo:
We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion ?tu + (?)1/2 log(1 + u) = 0, posed for x ? R, with nonnegative initial data in some function space of LlogL type. The solutions are shown to become bounded and C? smooth in (x, t) for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved.