917 resultados para Transplantation, Heterologous
Resumo:
We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.
Resumo:
Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.
Resumo:
In addition to modulating the function and stability of cellular mRNAs, microRNAs can profoundly affect the life cycles of viruses bearing sequence complementary targets, a finding recently exploited to ameliorate toxicities of vaccines and oncolytic viruses. To elucidate the mechanisms underlying microRNA-mediated antiviral activity, we modified the 3' untranslated region (3'UTR) of Coxsackievirus A21 to incorporate targets with varying degrees of homology to endogenous microRNAs. We show that microRNAs can interrupt the picornavirus life-cycle at multiple levels, including catalytic degradation of the viral RNA genome, suppression of cap-independent mRNA translation, and interference with genome encapsidation. In addition, we have examined the extent to which endogenous microRNAs can suppress viral replication in vivo and how viruses can overcome this inhibition by microRNA saturation in mouse cancer models.
Resumo:
The alpha 1B-adrenergic receptor (alpha 1B-ADR) is a member of the G-protein-coupled family of transmembrane receptors. When transfected into Rat-1 and NIH 3T3 fibroblasts, this receptor induces focus formation in an agonist-dependent manner. Focus-derived, transformed fibroblasts exhibit high levels of functional alpha 1B-ADR expression, demonstrate a catecholamine-induced enhancement in the rate of cellular proliferation, and are tumorigenic when injected into nude mice. Induction of neoplastic transformation by the alpha 1B-ADR, therefore, identifies this normal cellular gene as a protooncogene. Mutational alteration of this receptor can lead to activation of this protooncogene, resulting in an enhanced ability of agonist to induce focus formation with a decreased latency and quantitative increase in transformed foci. In contrast to cells expressing the wild-type alpha 1B-ADR, focus formation in "oncomutant"-expressing cell lines appears constitutively activated with the generation of foci in unstimulated cells. Further, these cell lines exhibit near-maximal rates of proliferation even in the absence of catecholamine supplementation. They also demonstrate an enhanced ability for tumor generation in nude mice with a decreased period of latency compared with cells expressing the wild-type receptor. Thus, the alpha 1B-ADR gene can, when overexpressed and activated, function as an oncogene inducing neoplastic transformation. Mutational alteration of this receptor gene can result in the activation of this protooncogene, enhancing its oncogenic potential. These findings suggest that analogous spontaneously occurring mutations in this class of receptor proteins could play a key role in the induction or progression of neoplastic transformation and atherosclerosis.
Resumo:
Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. In the heterogeneous group of hepatocellular carcinomas, those with characteristics of embryonic stem-cell and progenitor-cell gene expression are associated with the worst prognosis. The oncofetal gene SALL4, a marker of a subtype of hepatocellular carcinoma with progenitor-like features, is associated with a poor prognosis and is a potential target for treatment.
Resumo:
The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin-dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone-dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.
Resumo:
The photosensitizing properties of m-tetrahydroxyphenylchlorin (mTHPC) and polyethylene glycol-derivatized mTHPC (pegylated mTHPC) were compared in nude mice bearing human malignant mesothelioma, squamous cell carcinoma and adenocarcinoma xenografts. Laser light (20 J/cm2) at 652 nm was delivered to the tumour (surface irradiance) and to an equal-sized area of the hind leg of the animals after i.p. administration of 0.1 mg/kg body weight mTHPC and an equimolar dose of pegylated mTHPC, respectively. The extent of tumour necrosis and normal tissue injury was assessed by histology. Both mTHPC and pegylated mTHPC catalyse photosensitized necrosis in mesothelioma xenografts at drug-light intervals of 1-4 days. The onset of action of pegylated mTHPC seemed slower but significantly exceeds that of mTHPC by days 3 and 4 with the greatest difference being noted at day 4. Pegylated mTHPC also induced significantly larger photonecrosis than mTHPC in squamous cell xenografts but not in adenocarcinoma at day 4, where mTHPC showed greatest activity. The degree of necrosis induced by pegylated mTHPC was the same for all three xenografts. mTHPC led to necrosis of skin and underlying muscle at a drug-light interval of 1 day but minor histological changes only at drug-light intervals from 2-4 days. In contrast, pegylated mTHPC did not result in histologically detectable changes in normal tissues under the same treatment conditions at any drug-light interval assessed. In this study, pegylated mTHPC had advantages as a photosensitizer compared to mTHPC. Tissue concentrations of mTHPC and pegylated mTHPC were measured by high-performance liquid chromatography in non-irradiated animals 4 days after administration. There was no significant difference in tumour uptake between the two sensitizers in mesothelioma, adenocarcinoma and squamous cell carcinoma xenografts. Tissue concentration measurements were of limited use for predicting photosensitization in this model.
Resumo:
OBJETIVO: Avaliar o uso da cápsula renal de eqüino preservada em glicerina 98% no reparo de lesões lamelares esclerais em cães. MÉTODOS: Foram utilizados 12 cães, machos e fêmeas, com peso médio de 12kg. Foram realizadas avaliações clínica e morfológica aos 1, 3, 7, 15, 30 e 60 dias de pós-operatório. Após anestesia geral e procedimentos padrões de preparo do campo operatório, foi realizada cantotomia temporal, seguida de incisão conjutival e escleral com área de 0,5x0,5 cm na posição de 1hora, próxima ao limbo. em seguida, um fragmento de mesma dimensão de cápsula renal de eqüino preservada em glicerina, previamente hidratado em solução salina, foi aplicado ao defeito escleral criado sendo fixado com pontos simples isolados com vicryl 7-0®. RESULTADOS: A avaliação clínica revelou blefaroespasmo/fotofobia até o sétimo dia de pós-operatório. Foi observado edema conjuntival até o quinto dia, acompanhado de secreção ocular mucóide, que persistiu até o décimo dia de pós-operatório. Não foram observados sinais clínicos de rejeição do enxerto em todos os animais, em todos os períodos avaliados. Os segmentos anterior e posterior do bulbo ocular não apresentaram sinais de inflamação. A análise morfológica revelou exsudação inflamatória aguda nos períodos precoces e intermediários da avaliação e inflamação crônica nos períodos tardios da observação. Houve incorporação do enxerto ao leito receptor. CONCLUSÃO: Os resultados sugerem que a cápsula renal de eqüino preservada pode ser mais uma alternativa de membrana biológica para o reparo de lesões esclerais lamelares em cães e no homem.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Traumatic brain injury (TBI) directly affects nearly 1.5 million new patients per year in the USA, adding to the almost 6 million cases in patients who are permanently affected by the irreversible physical, cognitive and psychosocial deficits from a prior injury. Adult stem cell therapy has shown preliminary promise as an option for treatment, much of which is limited currently to supportive care. Preclinical research focused on cell therapy has grown significantly over the last decade. One of the challenges in the translation of this burgeoning field is interpretation of the promising experimental results obtained from a variety of cell types, injury models and techniques. Although these variables can become barriers to a collective understanding and to evidence-based translation, they provide crucial information that, when correctly placed, offers the opportunity for discovery. Here, we review the preclinical evidence that is currently guiding the translation of adult stem cell therapy for TBI.