997 resultados para Transperineal 3D scan


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an extension of the iterative closest point (ICP) algorithm that simultaneously registers multiple 3D scans. While ICP fails to utilize the multiview constraints available, our method exploits the information redundancy in a set of 3D scans by using the averaging of relative motions. This averaging method utilizes the Lie group structure of motions, resulting in a 3D registration method that is both efficient and accurate. In addition, we present two variants of our approach, i.e., a method that solves for multiview 3D registration while obeying causality and a transitive correspondence variant that efficiently solves the correspondence problem across multiple scans. We present experimental results to characterize our method and explain its behavior as well as those of some other multiview registration methods in the literature. We establish the superior accuracy of our method in comparison to these multiview methods with registration results on a set of well-known real datasets of 3D scans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The first childbirth has the greatest impact on a woman’s pelvic floor when major changes occur. The aim of this study was to comprehensively describe pelvic floor dysfunction (PFD) in young nulliparous women, and its correlation with postnatal pathology. Methods: A prospective study was performed at Cork University Maternity Hospital, Ireland. Initially 1484 nulliparous women completed the validated Australian Pelvic Floor Questionnaire at 15 weeks’ gestation and repeatedly at one year postnatally (N=872). In the second phase, at least one year postnatally, 202 participants without subsequent pregnancies attended the clinical follow up which included: pelvic organ prolapse quantification, a 3D-Transperineal ultrasound scan and collagen level assessment. Results: A high pre-pregnancy prevalence of various types of PFD was detected, which in the majority of cases persisted postnatally and included multiple types of PFD. The first birth had a negative impact on severity of pre-pregnancy symptoms in <15% of cases. Apart from prolapse, vaginal delivery, including instrumental delivery did not increase the risk of PFD symptoms, where as Caesarean section was protective for all types of PFD. The first birth had a bigger impact on pre-existing symptoms of overactive bladder compared to stress urinary incontinence. Pelvic organ prolapse is extremely prevalent in young primiparous women, however usually it is low grade and asymptomatic. Congenital factors and high collagen type III levels play an important role in the aetiology of pelvic organs prolapse. Levator ani trauma is present in one in three women after the first pregnancy and delivery. Conclusion: The main damage to the pelvic floor most likely occurs due to an undiagnosed congenital intrinsic weakness of the pelvic floor structures. PFD is highly associated with first childbirth, however it seems that pregnancy and delivery are contributing factors only which unmask the congenital intrinsic weakness of the pelvic floor support.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the problem of approximating the 3D scan of a real object through an affine combination of examples. Common approaches depend either on the explicit estimation of point-to-point correspondences or on 2-dimensional projections of the target mesh; both present drawbacks. We follow an approach similar to [IF03] by representing the target via an implicit function, whose values at the vertices of the approximation are used to define a robust cost function. The problem is approached in two steps, by approximating first a coarse implicit representation of the whole target, and then finer, local ones; the local approximations are then merged together with a Poisson-based method. We report the results of applying our method on a subset of 3D scans from the Face Recognition Grand Challenge v.1.0.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a method of recovering the 6 DoF pose (Cartesian position and angular rotation) of a range sensor mounted on a mobile platform. The method utilises point targets in a local scene and optimises over the error between their absolute position and their apparent position as observed by the range sensor. The analysis includes an investigation into the sensitivity and robustness of the method. Practical results were collected using a SICK LRS2100 mounted on a P&H electric mining shovel and present the errors in scan data relative to an independent 3D scan of the scene. A comparison to directly measuring the sensor pose is presented and shows the significant accuracy improvements in scene reconstruction using this pose estimation method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated whether measurements on conventional frontal radiographs are comparable with measurements on cone beam computed tomography (CBCT)-constructed frontal cephalometric radiographs taken from dry human skulls. CBCT scans and conventional frontal cephalometric radiographs were made of 40 dry skulls. With I-Cat Vision((R)) software, a cephalometric radiograph was constructed from the CBCT scan. Standard cephalometric software was used to identify landmarks and calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs on all Images 5 times with a time-interval of 1 week. Intra-observer reliability was acceptable for all measurements. The reproducibility of the measurements on the frontal radiographs obtained from the CBCT scans was higher than those on conventional frontal radiographs. There is a statistically significant and clinically relevant difference between measurements on conventional and constructed frontal radiographs. There is a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements on frontal cephalometric radiographs constructed from CBCT scans, owing to different positioning of patients in both devices. Positioning of the patient in the CBCT device appears to be an important factor in cases where a 2D projection of the 3D scan is made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the postmortem findings of a fatal road accident involving a motorcyclist, a car, and a common buzzard. Both the motorcyclist and the bird died on the scene of the accident and were examined by postmortem full-body CT and autopsy. In addition, a facial injury of the motorcyclist was compared with the dimensions of the buzzard’s beak and claws by 3D scan technologies. Blood splatters collected on the bird’s beak, feet, and tail were examined by DNA analysis. The overall findings suggested a collision of a common buzzard with a motorcyclist in full speed, causing the motorcyclist to lose control of his vehicle and crash with an approaching car on the oncoming lane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of six scanning cloud radar scan strategies to reconstruct cumulus cloud fields for radiation study is assessed. Utilizing snapshots of clean and polluted cloud fields from large eddy simulations, an analysis is undertaken of error in both the liquid water path and monochromatic downwelling surface irradiance at 870 nm of the reconstructed cloud fields. Error introduced by radar sensitivity, choice of radar scan strategy, retrieval of liquid water content (LWC), and reconstruction scheme is explored. Given an in␣nitely sensitive radar and perfect LWC retrieval, domain average surface irradiance biases are typically less than 3 W m␣2 ␣m␣1, corresponding to 5–10% of the cloud radiative effect (CRE). However, when using a realistic radar sensitivity of ␣37.5 dBZ at 1 km, optically thin areas and edges of clouds are dif␣cult to detect due to their low radar re-ectivity; in clean conditions, overestimates are of order 10 W m␣2 ␣m␣1 (~20% of the CRE), but in polluted conditions, where the droplets are smaller, this increases to 10–26 W m␣2 ␣m␣1 (~40–100% of the CRE). Drizzle drops are also problematic; if treated as cloud droplets, reconstructions are poor, leading to large underestimates of 20–46 W m␣2 ␣m␣1 in domain average surface irradiance (~40–80% of the CRE). Nevertheless, a synergistic retrieval approach combining the detailed cloud structure obtained from scanning radar with the droplet-size information and location of cloud base gained from other instruments would potentially make accurate solar radiative transfer calculations in broken cloud possible for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study extends the ‘zero scan’ method for CT imaging of polymer gel dosimeters to include multi-slice acquisitions. Multi slice CT images consisting of 24 slices of 1.2 mm thickness were acquired of an irradiated polymer gel dosimeter, and processed with the zero scan technique. The results demonstrate that zero scan based gel readout can be successfully applied to generate a three dimensional image of the irradiated gel field. Compared to the raw CT images the processed figures and cross gel profiles demonstrated reduced noise and clear visibility of the penumbral region. Moreover these improved results further highlight the suitability of this method in volumetric reconstruction with reduced CT data acquisition per slice. This work shows that 3D volumes of irradiated polymer gel dosimeters can be acquired and processed with x-ray CT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced Scan design can significantly improve the fault coverage for two pattern delay tests at the cost of exorbitantly high area overhead. The redundant flip-flops introduced in the scan chains have traditionally only been used to launch the two-pattern delay test inputs, not to capture tests results. This paper presents a new, much lower cost partial Enhanced Scan methodology with both improved controllability and observability. Facilitating observation of some hard to observe internal nodes by capturing their response in the already available and underutilized redundant flip-flops improves delay fault coverage with minimal or almost negligible cost. Experimental results on ISCAS'89 benchmark circuits show significant improvement in TDF fault coverage for this new partial enhance scan methodology.