84 resultados para Transitivity
Resumo:
This article addresses the lack of work on media and crime in Critical Discourse Analysis (CDA), using an example of a factual television crime report. The existing research in media studies and criminology points to the way that the media misrepresents crime by distorting public understandings and backgrounding structural issues, such as poverty, which are related to crime thereby legitimising a criminal justice system that serves the interests of the powerful in society. Using social actor and transitivity analysis, this article shows how multimodal CDA can make an important contribution as it reveals the more subtle linguistic strategies and visual representations by which this process is accomplished, showing how each plays a part in the recontextualisation of social practice. This programme backgrounds which crimes are committed but foregrounds mental states and the neutrality of policing.
Resumo:
The rationalizability of a choice function by means of a transitive relation has been analyzed thoroughly in the literature. However, not much seems to be known when transitivity is weakened to quasi-transitivity or acyclicity. We describe the logical relationships between the different notions of rationalizability involving, for example, the transitivity, quasi-transitivity, or acyclicity of the rationalizing relation. Furthermore, we discuss sufficient conditions and necessary conditions for rational choice on arbitrary domains. Transitive, quasi-transitive, and acyclical rationalizability are fully characterized for domains that contain all singletons and all two-element subsets of the universal set.
Resumo:
Although the theory of greatest-element rationalizability and maximal-element rationalizability under general domains and without full transitivity of rationalizing relations is well-developed in the literature, these standard notions of rational choice are often considered to be too demanding. An alternative definition of rationality of choice is that of non-deteriorating choice, which requires that the chosen alternatives must be judged at least as good as a reference alternative. In game theory, this definition is well-known under the name of individual rationality when the reference alternative is construed to be the status quo. This alternative form of rationality of individual and social choice is characterized in this paper on general domains and without full transitivity of rationalizing relations.
Resumo:
We generalize the classical expected-utility criterion by weakening transitivity to Suzumura consistency. In the absence of full transitivity, reflexivity and completeness no longer follow as a consequence of the system of axioms employed and a richer class of rankings of probability distributions results. This class is characterized by means of standard expected-utility axioms in addition to Suzumura consistency. An important feature of some members of our new class is that they allow us to soften the negative impact of wellknown paradoxes without abandoning the expected-utility framework altogether.
Resumo:
We consider Anosov actions of R(k), k >= 2, on a closed connected orientable manifold M, of codimension one, i.e. such that the unstable foliation associated to some element of R(k) has dimension one. We prove that if the ambient manifold has dimension greater than k + 2, then the action is topologically transitive. This generalizes a result of Verjovsky for codimension-one Anosov flows.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that if f is a homeomorphism of the 2-torus isotopic to the identity and its lift (f) over tilde is transitive, or even if it is transitive outside the lift of the elliptic islands, then (0,0) is in the interior of the rotation set of (f) over tilde. This proves a particular case of Boyland's conjecture.
Resumo:
In this note we survey recent results on automorphisms of affine algebraic varieties, infinitely transitive group actions and flexibility. We present related constructions and examples, and discuss geometric applications and open problems.
Resumo:
Bana et al. proposed the relation formal indistinguishability (FIR), i.e. an equivalence between two terms built from an abstract algebra. Later Ene et al. extended it to cover active adversaries and random oracles. This notion enables a framework to verify computational indistinguishability while still offering the simplicity and formality of symbolic methods. We are in the process of making an automated tool for checking FIR between two terms. First, we extend the work by Ene et al. further, by covering ordered sorts and simplifying the way to cope with random oracles. Second, we investigate the possibility of combining algebras together, since it makes the tool scalable and able to cover a wide class of cryptographic schemes. Specially, we show that the combined algebra is still computationally sound, as long as each algebra is sound. Third, we design some proving strategies and implement the tool. Basically, the strategies allow us to find a sequence of intermediate terms, which are formally indistinguishable, between two given terms. FIR between the two given terms is then guaranteed by the transitivity of FIR. Finally, we show applications of the work, e.g. on key exchanges and encryption schemes. In the future, the tool should be extended easily to cover many schemes. This work continues previous research of ours on use of compilers to aid in automated proofs for key exchange.
Resumo:
The topic of this dissertation is the geometric and isometric theory of Banach spaces. This work is motivated by the known Banach-Mazur rotation problem, which asks whether each transitive separable Banach space is isometrically a Hilbert space. A Banach space X is said to be transitive if the isometry group of X acts transitively on the unit sphere of X. In fact, some weaker symmetry conditions than transitivity are studied in the dissertation. One such condition is an almost isometric version of transitivity. Another investigated condition is convex-transitivity, which requires that the closed convex hull of the orbit of any point of the unit sphere under the rotation group is the whole unit ball. Following the tradition developed around the rotation problem, some contemporary problems are studied. Namely, we attempt to characterize Hilbert spaces by using convex-transitivity together with the existence of a 1-dimensional bicontractive projection on the space, and some mild geometric assumptions. The convex-transitivity of some vector-valued function spaces is studied as well. The thesis also touches convex-transitivity of Banach lattices and resembling geometric cases.