940 resultados para Transformation-based semi-parametric estimators
Resumo:
The position of a stationary target can be determined using triangulation in combination with time of arrival measurements at several sensors. In urban environments, none-line-of-sight (NLOS) propagation leads to biased time estimation and thus to inaccurate position estimates. Here, a semi-parametric approach is proposed to mitigate the effects of NLOS propagation. The degree of contamination by NLOS components in the observations, which result in asymmetric noise statistics, is determined and incorporated into the estimator. The proposed method is adequate for environments where the NLOS error plays a dominant role and outperforms previous approaches that assume a symmetric noise statistic.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.
Resumo:
Forest fires can cause extensive damage to natural resources and properties. They can also destroy wildlife habitat, affect the forest ecosystem and threaten human lives. In this paper incidences of extreme wildland fires are modelled by a point process model which incorporates time-trend. A model based on a generalised Pareto distribution is used to model data on acres of wildland burnt by extreme fire in the US since 1825. A semi-parametric smoothing approach, which is very useful in exploratory analysis of changes in extremes, is illustrated with the maximum likelihood method to estimate model parameters.
Resumo:
Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.
Resumo:
Forecasts generated by time series models traditionally place greater weight on more recent observations. This paper develops an alternative semi-parametric method for forecasting that does not rely on this convention and applies it to the problem of forecasting asset return volatility. In this approach, a forecast is a weighted average of historical volatility, with the greatest weight given to periods that exhibit similar market conditions to the time at which the forecast is being formed. Weighting is determined by comparing short-term trends in volatility across time (as a measure of market conditions) by means of a multivariate kernel scheme. It is found that the semi-parametric method produces forecasts that are significantly more accurate than a number of competing approaches at both short and long forecast horizons.
Resumo:
Quantifying spatial and/or temporal trends in environmental modelling data requires that measurements be taken at multiple sites. The number of sites and duration of measurement at each site must be balanced against costs of equipment and availability of trained staff. The split panel design comprises short measurement campaigns at multiple locations and continuous monitoring at reference sites [2]. Here we present a modelling approach for a spatio-temporal model of ultrafine particle number concentration (PNC) recorded according to a split panel design. The model describes the temporal trends and background levels at each site. The data were measured as part of the “Ultrafine Particles from Transport Emissions and Child Health” (UPTECH) project which aims to link air quality measurements, child health outcomes and a questionnaire on the child’s history and demographics. The UPTECH project involves measuring aerosol and particle counts and local meteorology at each of 25 primary schools for two weeks and at three long term monitoring stations, and health outcomes for a cohort of students at each school [3].
Resumo:
The occurrence of extreme movements in the spot price of electricity represents a significant source of risk to retailers. A range of approaches have been considered with respect to modelling electricity prices; these models, however, have relied on time-series approaches, which typically use restrictive decay schemes placing greater weight on more recent observations. This study develops an alternative, semi-parametric method for forecasting, which uses state-dependent weights derived from a kernel function. The forecasts that are obtained using this method are accurate and therefore potentially useful to electricity retailers in terms of risk management.
Resumo:
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making
Resumo:
A new two-stage state feedback control design approach has been developed to monitor the voltage supplied to magnetorheological (MR) dampers for semi-active vibration control of the benchmark highway bridge. The first stage contains a primary controller, which provides the force required to obtain a desired closed-loop response of the system. In the second stage, an optimal dynamic inversion (ODI) approach has been developed to obtain the amount of voltage to be supplied to each of the MR dampers such that it provides the required force prescribed by the primary controller. ODI is formulated by optimization with dynamic inversion, such that an optimal voltage is supplied to each damper in a set. The proposed control design has been simulated for both phase-I and phase-II study of the recently developed benchmark highway bridge problem. The efficiency of the proposed controller is analyzed in terms of the performance indices defined in the benchmark problem definition. Simulation results demonstrate that the proposed approach generally reduces peak response quantities over those obtained from the sample semi-active controller, although some response quantities have been seen to be increasing. Overall, the proposed control approach is quite competitive as compared with the sample semi-active control approach.
Resumo:
The easily constructed bile acid-based semi-rigid molecular tweezer 2 binds guest 8 in chloroform with an association constant of 83 dm(3) mol(-1).
Resumo:
The problem of on-line recognition and retrieval of relatively weak industrial signals such as partial discharges (PD), buried in excessive noise, has been addressed in this paper. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) due to the overlapping broad band frequency spectrum of PI and PD pulses. Therefore, on-line, onsite, PD measurement is hardly possible in conventional frequency based DSP techniques. The observed PD signal is modeled as a linear combination of systematic and random components employing probabilistic principal component analysis (PPCA) and the pdf of the underlying stochastic process is obtained. The PD/PI pulses are assumed as the mean of the process and modeled instituting non-parametric methods, based on smooth FIR filters, and a maximum aposteriori probability (MAP) procedure employed therein, to estimate the filter coefficients. The classification of the pulses is undertaken using a simple PCA classifier. The methods proposed by the authors were found to be effective in automatic retrieval of PD pulses completely rejecting PI.
Resumo:
Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.