884 resultados para Transformadas de Wavelet
Resumo:
A Fluxometria por Laser Doppler (LDF) é uma técnica não invasiva usada para medir o fluxo microvascular da pele humana. No fluxo é possível isolar componentes oscilatórias em gamas de frequências características que se encontram relacionadas com as actividades cardíaca, respiratória, miogénica, simpática e metabólica. A LDF permite assim estudar a fisiologia do fluxo sanguíneo. Neste trabalho foram realizadas medições de LDF nos tornozelos de 9 mulheres saudáveis numa situação de restrição à perfusão, usando uma braçadeira nos tornozelos. Os dados foram analisados com Transformada de Wavelet e Detrended Fluctuation Analysis (DFA) de modo a estudar os rácios das amplitudes das componentes de Wavelet e os respectivos expoentes . Estes parâmetros foram comparados nas situações de repouso, de restrição à perfusão e de recuperação após remoção da braçadeira. Observou-se que durante a restrição à perfusão houve um aumento significativo dos rácios de amplitude e dos expoentes a para as componentes cardíaca, respiratória e miogénica, o que pode reflectir vasoconstrição. Os parâmetros da componente metabólica apresentaram uma diminuição que se pode relacionar com variações na libertação de NO por parte do endotélio. Após a libertação da braçadeira, os parâmetros das componentes respiratória, miogénica e metabólica retornaram aos valores iniciais. Aanálise combinada de Wavelet com DFAoferece uma nova visão sobre a regulação do fluxo microvascular.
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015.
Resumo:
We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify
Resumo:
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech -- Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions -- A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds -- Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions -- Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it -- Finally features related with emotions in voiced speech are extracted and presented
Resumo:
A análise do sono está baseada na polissonogra a e o sinal de EEG é o mais importante. A necessidade de desenvolver uma análise automática do sono tem dois objetivos básicos: reduzir o tempo gasto na análise visual e explorar novas medidas quantitativas e suas relações com certos tipos de distúrbios do sono. A estrutura do sinal de EEG de sono está relacionada com a chamada microestrutura do sono, que é composta por grafoelementos. Um destes grafoelementos é o fuso de sono (spindles). Foi utilizado um delineamento transversal aplicado a um grupo de indivíduos normais do sexo masculino para testar o desempenho de um conjunto de ferramentas para a detecção automática de fusos. Exploramos a detecção destes fusos de sono através de procura direta, Matching Pursuit e uma rede neural que utiliza como "input"a transformada de Gabor (GT). Em comparação com a análise visual, o método utilizando a transformada de Gabor e redes neurais apresentou uma sensibilidade de 77% e especi cidade de 73%. Já o Matching Pursuit, apesar de mais demorado, se mostrou mais e ciente, apresentando sensibilidade de 81,2% e especi cidade de 85.2%.
Resumo:
o exame para o diagnóstico de doenças da laringe é usualmente realizado através da videolaringoscopia e videoestroboscopia. A maioria das doenças na laringe provoca mudanças na voz do paciente. Diversos índices têm sido propostos para avaliar quantitativamente a qualidade da voz. Também foram propostos vários métodos para classificação automática de patologias da laringe utilizando apenas a voz do paciente. Este trabalho apresenta a aplicação da Transformada Wavelet Packet e do algoritmo Best Basis [COI92] para a classificação automática de vozes em patológicas ou normais. Os resultados obtidos mostraram que é possível classificar a voz utilizando esta Transformada. Tem-se como principal conclusão que um classificador linear pode ser obtido ao se empregar a Transformada Wavelet Packet como extrator de características. O classificador é linear baseado na existência ou não de nós na decomposição da Transformada Wavelet Packet. A função Wavelet que apresentou os melhores resultados foi a sym1et5 e a melhor função custo foi a entropia. Este classificador linear separa vozes normais de vozes patológicas com um erro de classificação de 23,07% para falsos positivos e de 14,58%para falsos negativos.
Resumo:
Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.
Resumo:
In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good