Double Fourier analysis for Emotion Identification in Voiced Speech
Contribuinte(s) |
Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Modelado Matemático dsierras@eafit.edu.co Mathematical Modeling Research Group, GRIMMAT, School of Sciences, Universidad EAFIT, Medellín, Colombia |
---|---|
Data(s) |
2016
11/05/2016
2016
11/05/2016
|
Resumo |
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech -- Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions -- A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds -- Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions -- Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it -- Finally features related with emotions in voiced speech are extracted and presented 20th Argentinean Bioengineering Society Congress, SABI 2015 (XX Congreso Argentino de Bioingeniería y IX Jornadas de Ingeniería Clínica)28–30 October 2015, San Nicolás de los Arroyos, Argentina |
Formato |
application/pdf |
Identificador |
1742-6596 http://dx.doi.org/10.1088/1742-6596/705/1/012035 http://hdl.handle.net/10784/8375 10.1088/1742-6596/705/1/012035 |
Idioma(s) |
eng |
Publicador |
IOP Publishing |
Relação |
Journal of Physics: Conference Series; Vol. 705, Núm. 1 (2016); pp.9 http://dx.doi.org/10.1088/1742-6596/705/1/012035 |
Direitos |
info:eu-repo/semantics/openAccess openAccess Libre acceso Creative Commons Attribution 3.0 licence (CC BY 3.0) |
Fonte |
Journal of Physics: Conference Series; Vol. 705, Núm. 1 (2016); pp.9 |
Palavras-Chave | #Transformadas de Wavelet #Procesamiento digital de voz #Morfología matemática #ANÁLISIS ESPECTRAL #ANÁLISIS DE FOURIER #PROCESAMIENTO DE SEÑALES #SISTEMAS DE PROCESAMIENTO DE LA VOZ #TRANSFORMACIONES (MATEMÁTICAS) #PRINCIPIO DE INCERTIDUMBRE DE HEISENBERG #Spectrum analysis #Fourier analysis #Signal processing #Speech processing systems #Transformations (mathematics) #Heisenberg uncertainty principle |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion article Artículo |