951 resultados para Transformada de Laplace
Resumo:
Neste trabalho são desenvolvidos métodos numéricos para inversão da transformada de Laplace, fazendo-se uso de polinômios trigonométricos e de Laguerre. Sua utilização é ilustrada num problema de fronteira móvel da área de engenharia nuclear, através do algoritmo computacional ALG-619. Uma revisão dos aspectos analíticos básicos da transformada de Laplace e sua utilização na resolução de equações diferenciais parciais é apresentada de maneira suscinta.
Resumo:
Neste trabalho, desenvolvemos uma metodologia semi-analítica para solução de problemas de condução de calor bidimensional, não-estacionária em meios multicompostos. Esta metodologia combina os métodos nodal, com parâmetros concentrados, e a técnica da transformada de Laplace. Inicialmente, aplicamos o método nodal. Nele, a equação diferencial parcial que descreve o problema é integrada, transversalmente, em relação a uma das variáveis espaciais. Em seguida, é utilizado o método de parâmetros concentrados, onde a distribuição de temperatura nos contornos superior e inferior é substituída pelo seu valor médio. Os problemas diferenciais unidimensionais resultantes são então resolvidos com o uso da técnica da transformada de Laplace, cuja inversão é avaliada numericamente. O método proposto é usado na solução do problema de condução de calor, em paredes de edificações. A implementação computacional é feita, utilizando-se a linguagem FORTRAN e os resultados numéricos obtidos são comparados com os disponíveis na literatura.
Resumo:
Neste trabalho, apresentamos uma solução analítica para as equações difusivas unidimensionais da Teoria Geral de Perturbação em uma placa heterogênea, isto é, apresentamos as soluções analíticas para os problemas de autovalor para o fluxo de nêutrons e para o fluxo adjunto de nêutrons, para o cálculo do fator de multiplicação efetivo (keff), para o problema de fonte fixa e para o problema de função auxiliar. Resolvemos todos os problemas mencionados aplicando a Transformada de Laplace em uma placa heterogênea considerando um modelo de dois grupos de energia e realizamos a inversão de Laplace do fluxo transformado analiticamente através da técnica da expansão de Heaviside. Conhecendo o fluxo de nêutrons, exceto pelas constantes de integração, aplicamos as condições de contorno e de interface e resolvemos as equações algébricas homogêneas para o fator de multiplicação efetivo pelo método da bissecção. Obtemos o fluxo de nêutrons através da avaliação das constantes de integração para uma potência prescrita. Exemplificamos a metodologia proposta para uma placa com duas regiões e comparamos os resultados obtidos com os existentes na literatura.
Resumo:
Neste trabalho é obtida uma solução híbrida para a equação de Fokker-Planck dependente da energia, muito utilizada em problemas de implantação iônica. A idéia consiste na aplicação da transformada de Laplace na variável de energia e aplicação de um esquema de diferenças finitas nas variáveis espacial e angular desta equação. Tal procedimento gera um problema matricial simbólico para a energia transformada. Para resolver este sistema, procede-se a inversão de Laplace da matriz (sI+A), onde s é um parâmetro complexo, I a matriz identidade e A uma matriz quadrada gerada pela discretização das variáveis espacial e angular. A matriz A não é diagonalizável, desta forma, contorna-se este problema decompondo esta matriz na soma de outras duas, onde uma delas é diagonalizável. É gerado então um método iterativo de inversão, semelhante ao método da fonte fixa associado ao método de diagonalização, do qual o resultado fornecido são os valores para o fluxo de partículas do sistema. A partir disto pode-se determinar a energia depositada no sistema eletrônico e nuclear do alvo. Para validar os resultados obtidos faz-se a simulação de implantação de íons de B em Si numa faixa energética de 1keV a 50MeV, comparam-se os resultados com simulação gerada numericamente pelo software SRIM2003.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present work has as its goal to treat well known and interesting unidimensional cases from quantum mechanics through an unusual approach within this eld of physics. The operational method of Laplace transform, in spite of its use by Erwin Schrödinger in 1926 when treating the radial equation for the hydrogen atom, turned out to be forgotten for decades. However, the method has gained attention again for its use as a powerful tool from mathematical physics applied to the quantum mechanics, appearing in recent works. The method is specially suitable to the approach of cases where we have potential functions with even parity, because this implies in eigenfunctions with de ned parity, and since the domain of this transform ranges from 0 to ∞, it su ces that we nd the eigenfunction in the positive semi axis and, with the boundary conditions imposed over the eigenfunction at the origin plus the continuity (discontinuity) of the eigenfunction and its derivative, we make the odd, even or both parity extensions so we can get the eigenfunction along all the axis. Factoring the eigenfunction behavior at in nity and origin, we take the due care with the points that might bring us problems in the later steps of the solving process, thus we can manipulate the Schrödinger's Equation regardless of time, so that way we make it convenient to the application of Laplace transform. The Chapter 3 shows the methodology that must be followed in order to search for the solutions to each problem
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Faculdade de Tecnologia, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2016.
Resumo:
La presente obra está pensada como libro de texto para la asignatura de cálculo de los diferentes estudios de la Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación de la Universidad de Cantabria. A medida que se presenta la teoría se incluye, con objeto de ilustrarla, un buen número de ejemplos sencillos. Cada capítulo finaliza con ejercicios resueltos detalladamente y una relación de ejercicios propuestos, algunos de ellos incluídos en exámen. Se desarrollan cuatro temas fundamentalmente: cálculo vectorial, ecuaciones diferenciales ordinarias, integral de Fourier y transformada de Laplace.
Resumo:
Neste trabalho se propõe um avanço para a Técnica Transformada Integral Generalizada, GITT. O problema transformado, usualmente resolvido por subrotinas numéricas, é aqui abordado analiticamente fazendo-se uso da Transformada de Laplace. Para exemplificar o uso associado destas duas transformadas integrais, resolvem-se dois problemas. Um de concentração de poluentes na atmosfera e outro de convecção forçada com escoamento laminar, entre placas planas paralelas, com desenvolvimento simultâneo dos perfis térmico e hidrodinâmico. O primeiro é difusivo, transiente e com coeficientes variáveis. Sua solução é obtida de forma totalmente analítica. Além de mostrar o uso da técnica, este exemplo apesar de ter coeficientes variáveis, é resolvido com o auxílio de um problema de autovalores associado com coeficientes constantes. No segundo, obtém-se a solução da Equação da Energia analiticamente. Já a Equação da Conservação do Momentum é linearizada e resolvida de forma iterativa. A solução de cada iteração é obtida analiticamente.
Resumo:
Nete trabalho é apresentada uma solução analílica para o problema de ordenada discreta unidimensional e multigrupo de transporle de neutrons em simetria planar. A idéia básica da formulação proposta consiste na aplicação da transformada de Laplace na equação de ordenada discreta. Para a solução do sistema linear resultante, uma solução explícila para a matriz lnversa é estabelecida. Dessa forma, o fluxo angular é obtido, por inversão analítica, em termos do fluxo angular em x=O. Essa formulação é aplicada a problemas de domínio finito e semi-infinito. No primeiro caso, os valores de fluxo angular desconhecidos na fronteira em x=O, são determinados a partir dos valores conhecidos do fluxo angular em x=a; no segundo caso é usada a condição de que o fluxo angular é limilado no infinito. Foram tratados problemas homogêneos e heterogêneos para a placa plana com um grupo de neutrons e multigrupo.O problema inverso, que consiste na determinação do fluxo incidente na fronteira a partir de valores do fluxo escalar no interior do domínio, também foi resolvido. Os resullados obtidos para os problemas acima descritos, apresentaram uma boa comparação com os resultados disponíveis na literatura.
Resumo:
O objetivo deste trabalho consiste em aplicar o método LTSn em cálculos de parâmetros críticos como Keff, espessura e concentração atômica e obtenção do fiuxo escalar, da potência específica e do enriquecimento do combustível em placa plana homogenea e heterogênea, considerando modelo multigrupo e em diversas ordens de quadraturas. O método LTSn consiste na aplicação da transformada de Laplace em um conjunto de equações~de ordenadas discretas gerado pela aproximação SN, resultando em um sistema de equações algébricas simbólicas dependentes do parâmetro complexo s e reconstrução dos fluxos angulares pela técnica de expansão de Heaviside. A aplicação do método LTSn reduz a soluçào de um problema de autovalor, a solução de uma equação transcedental, possibilitando a obtenção de parâmetros críticos. Simulações numéricas são apresentadas.
Resumo:
Este trabalho pretende, na visão de novas tecnologias, discutir o processo de forjamento das ligas de alumínio (ABNT 6061), buscando propor uma metodologia baseada na ciência da engenharia. Deseja-se minimizar os procedimentos de tentativa e erro no desenvolvimento de processos de conformação. Para tanto, novas tecnologias disponíveis atualmente, tais como o Projeto Assistido por Computador (CAD), a Fabricação Assistida por Computador (CAM) e a Simulação do Processo (CAE) são empregadas. Resultados experimentais mostrando o comportamento da liga ABNT 6061 através das curvas de escoamento bem como o estabelecimento da condição do atrito no processo de conformação, avaliando dois lubrificantes comerciais disponíveis (Deltaforge 31 e Oildag) para aplicações nas ligas de alumínio, são reportados neste trabalho. A comparação dos resultados obtidos de um experimento prático de forjamento com a simulação pelo "Método dos Elementos Finitos" usando o código "QForm" é apresentada para uma peça de simetria axial em liga de alumínio. Finalmente, os resultados obtidos no forjamento de um componente automotivo em liga de alumínio (ABNT 6061), desenvolvido em parceria com a empresa Dana, são analisados e comparados com as simulações computacionais realizadas usando o código "Superforge".
Resumo:
Neste trabalho o método LTSN é utilizado para resolver a equação de transporte de fótons para uma placa plana heterogênea, modelo de multigrupo, com núcleo de espalhamento de Klein-Nishina, obtendo-se o fluxo de fótons em valores discretos de energia. O fluxo de fótons, juntamente com os parâmetros da placa foram usados para o cálculo da taxa de dose absorvida e do fator de buildup. O método LTSN consiste na aplicação da transformada de Laplace num conjunto de equações de ordenadas discretas, fornece uma solução analítica do sistema de equações lineares algébricas e a construção dos fluxos angulares pela técnica de expansão de Heaviside. Essa formulação foi aplicada ao cálculo de dose absorvida e ao fator de Buildup, considerando cinco valores de energia. Resultados numéricos são apresentados.
Resumo:
A equação de difusão-advecção é muito utilizada no campo de estudos da poluição atmosférica na determinação da concentração de poluentes. Uma maneira de solucionar o problema de fechamento desta equação está baseada na hipótese de transporte por gradiente que, em analogia com a difusão molecular, assume que o fluxo turbulento de concentração é proporcional à magnitude do gradiente de concentração média. Neste trabalho, diferentemente do modo tradicional, utiliza-se uma equação genérica para a difusão turbulenta considerando-se que o fluxo mais a sua derivada são proporcionais ao gradiente médio. Desta forma, obtém-se uma equação que leva em conta a assimetria no processo de dispersão de poluentes atmosféricos. Portanto, a proposta do presente trabalho é a obtenção da solução analítica desta nova equação utilizando-se a técnica da Transformada de Laplace, considerando-se a Camada Limite Planetária (CLP) como um sistema multicamadas. Os parâmetros que encerram a turbulência sâo derivados da teoria de difusão estatística de Taylor combinada com a teoria de similaridade convectiva válidos para grandes tempos de difusão. Finalmente, na avaliação da performance deste modelo que considera a assimetria no processo de dispersão de poluentes atmosféricos, utilizam-se os dados experimentais de Copenhagen e Prairie Grass.
Resumo:
O objetivo deste trabalho é obter uma nova solução analítica para a equação de advecção-difusão. Para tanto, considera-se um problema bidimensional difusivo-advectivo estacionário com coeficiente de difusão turbulenta vertical variável que modela a dispersão de poluentes na atmosfera. São utilizados três coeficientes difusivos válidos na camada limite convectiva e que dependem da altura, da distância da fonte e do perfil de velocidade. A abordagem utilizada para a resolução do problema é a técnica da Transformada Integral Generalizada, na qual a equação transformada do problema difusivo-advectivo é resolvida pela técnica da Transformada de Laplace com inversão analítica. Nenhuma aproximação é feita durante a derivação da solução, sendo assim, esta é exata exceto pelo erro de truncamento. O modelo ´e avaliado em condições moderadamente instáveis usando o experimento de Copenhagen. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com dados experimentais e com os resultados da literatura. O modelo proposto mostrou-se satisfatório em relação aos dados dos experimentos difusivos considerados.