968 resultados para Training session
Resumo:
Understanding the impact of training sessions on the immune response is crucial for the adequate periodization of training, to prevent both a negative influence on health and a performance impairment of the athlete. This study evaluated acute systemic immune cell changes in response to an actual swimming session, during a 24-h recovery period, controlling for sex, menstrual cycle phases, maturity, and age group. Competitive swimmers (30 females, 15 ± 1.3 years old; and 35 males, 16.5 ± 2.1 years old) performed a high-intensity training session. Blood samples were collected before, immediately after, 2 h after, and 24 h after exercise. Standard procedures for the assessment of leukogram by automated counting (Coulter LH 750, Beckman) and lymphocytes subsets by flow cytometry (FACS Calibur BD, Biosciences) were used. Subjects were grouped according to competitive age groups and pubertal Tanner stages. Menstrual cycle phase was monitored. The training session induced neutrophilia, lymphopenia, and a low eosinophil count, lasting for at least 2 h, independent of sex and maturity. At 24 h postexercise, the acquired immunity of juniors (15-17 years old), expressed by total lymphocytes and total T lymphocytes (CD3+), was not fully recovered. This should be accounted for when planning a weekly training program. The observed lymphopenia suggests a lower immune surveillance at the end of the session that may depress the immunity of athletes, highlighting the need for extra care when athletes are exposed to aggressive environmental agents such as swimming pools
Resumo:
Introduction Occupational therapists could play an important role in facilitating driving cessation for ageing drivers. This, however, requires an easy-to-learn, standardised on-road evaluation method. This study therefore investigates whether use of P-drive' could be reliably taught to occupational therapists via a short half-day training session. Method Using the English 26-item version of P-drive, two occupational therapists evaluated the driving ability of 24 home-dwelling drivers aged 70 years or over on a standardised on-road route. Experienced driving instructors' on-road, subjective evaluations were then compared with P-drive scores. Results Following a short half-day training session, P-drive was shown to have almost perfect between-rater reliability (ICC2,1=0.950, 95% CI 0.889 to 0.978). Reliability was stable across sessions including the training phase even if occupational therapists seemed to become slightly less severe in their ratings with experience. P-drive's score was related to the driving instructors' subjective evaluations of driving skills in a non-linear manner (R-2=0.445, p=0.021). Conclusion P-drive is a reliable instrument that can easily be taught to occupational therapists and implemented as a way of standardising the on-road driving test.
Resumo:
Oliveira, AS, Greco, CC, Pereira, MP, Figueira, TR, de Araujo Ruas, VD, Goncalves, M, and Denadai, BS. Physiological and neuromuscular profile during a Bodypump session: acute responses during a high-resistance training session. J Strength Cond Res 23(2): 579-586, 2009-The main purposes of this study were 1) to describe and to compare blood lactate ([La]), heart rate (HR), and electromyographic (EMG) parameters during high-repetition training sessions (HRTSs), 2) to analyze the influence of physical fitness levels in these parameters, and, 3) to analyze the relationship between metabolic ([La]) and neuromuscular (EMG) responses during the HRTS. Fifteen healthy untrained women (21.7 +/- 2.1 years) performed an HRTS called Bodypump for 1 hour, which incorporated the use of variable free weights and high repetitions in a group setting. This session involved 10 music selections (M1-M10) containing resistive exercises for different muscle groups. After music selections 2 (M2), 4 (M4), 6 (M6), 7 (M7), and 9 (M9), [La], HR, and EMG (vastus medialis [VM], vastus lateralis [VL], iliocostalis lumborum [IC], and longissimus thoracis <) were determined. The [La] (M2, 4.00 +/- 1.45 mM; M7, 5.02 +/- 1.73 mM) and HR (M2, 153.64 +/- 18.89 bpm; M7, 16.14 +/- 20.14 bpm) obtained at M2 and M7 were similar but were significantly higher than the other moments of the session. However, EMG (root mean square [RMS]) at M2 (VL, VM, and LT) was lower than at M7. There was no significant correlation of strength and aerobic physical fitness with [La], RMS. In the same way, there was no significant correlation of [La] with RMS at M2 and M7. on the basis of our data, we can conclude that metabolic, cardiovascular, and EMG variables present different and independent behavior during an HRTS. Accordingly, for neuromuscular conditions during HRTS, it seems to be enough to induce improvement in the muscular strength of inferior limbs in untrained subjects.
Resumo:
Objective. The aim of this study was to analyze the relationships between the rate of perceived exertion (RPE) of a whole exercise session (RPE-S) and objective measures of exercise intensity during a karate training session.Methods. Eight well-trained karate athletes performed a single training session involving basic karate techniques and sparring. Heart rate (HR) was continuously monitored, while blood lactate ([lac]13) and rating of perceived exertion using the Borg's 6-20 scale were taken each 10-min during exercise. Athletes were also asked to rate their RPE-S using a modified CR-10 scale 30-min after exercise.Results. Significant relationships (P<0.05) were found between RPE-S and mean values of %HRmax (r(p) = 0.91), %HR reserve (r(p) = 0.87), [lac]b(r(p) = 0.96), and RPE (r(p) = 0.78) during the session, but not between RPE-S and the duration of exercise bout (r(s) = 0.28; P > 0.05). RPE-S was also significantly related (P < 0.05) to percentage of time sustained under ventilatory thresold (VT) (r(p) = 0.96), between VT and respiratory compensation point (RCP) (r(p) = 0.93) and above RCP (r(p) = 0.96).Conclusion. These results suggest RPE-S to be a valid tool for assessing interindividual variations in global exercise intensity during karate training. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Deminice, R, Sicchieri, T, Mialich, MS, Milani, F, Ovidio, PP, and Jordao, AA. Oxidative stress biomarker responses to an acute session of hypertrophy-resistance traditional interval training and circuit training. J Strength Cond Res 25(3): 798-804, 2011-We have studied circuit resistance schemes with high loads as a time-effective alternative to hypertrophy-traditional resistance training. However, the oxidative stress biomarker responses to high-load circuit training are unknown. The aim of the present study was to compare oxidative stress biomarker response with an acute session of hypertrophy-resistance circuit training and traditional interval training. A week after the 1 repetition maximum (1RM) test, 11 healthy and well-trained male participants completed hypertrophy-resistance acute sessions of traditional interval training (3 x 10 repetitions at 75% of the 1RM, with 90-second passive rest) and circuit training (3 x 10 repetitions at 75% of the 1RM, in alternating performance of 2 exercises with different muscle groups) in a randomized and cross-over design. Venous blood samples were collected before (pre) and 10 minutes after (post) the resistance training sessions for oxidative stress biomarker assays. As expected, the time used to complete the circuit training (20.2 +/- 1.6) was half of that needed to complete the traditional interval training (40.3 +/- 1.8). Significant increases (p < 0.05) in thiobarbituric acid reactive substances (40%), creatine kinase (CK) (67%), glutathione (14%), and uric acid (25%) were detected posttraditional interval training session in relation to pre. In relation to circuit training, a significant increase in CK (33%) activity postsession in relation to pre was observed. Statistical analysis did not reveal any other change in the oxidative stress biomarker after circuit training. In conclusion, circuit resistance-hypertrophy training scheme proposed in the current study promoted lower oxidative stress biomarkers and antioxidant modulations compared with resistance traditional interval training.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF- α , IL-1 β , and NF- κ B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1 α , and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.
Resumo:
Recent studies have investigated whether low level laser therapy (LLLT) can optimize human muscle performance in physical exercise. This study tested the effect of LLLT on muscle performance in physical strength training in humans compared with strength training only. The study involved 36 men (20.8 +/- 2.2 years old), clinically healthy, with a beginner and/or moderate physical activity training pattern. The subjects were randomly distributed into three groups: TLG (training with LLLT), TG (training only) and CG (control). The training for TG and TLG subjects involved the leg-press exercise with a load equal to 80% of one repetition maximum (1RM) in the leg-press test over 12 consecutive weeks. The LLLT was applied to the quadriceps muscle of both lower limbs of the TLG subjects immediately after the end of each training session. Using an infrared laser device (808 nm) with six diodes of 60 mW each a total energy of 50.4 J of LLLT was administered over 140 s. Muscle strength was assessed using the 1RM leg-press test and the isokinetic dynamometer test. The muscle volume of the thigh of the dominant limb was assessed by thigh perimetry. The TLG subjects showed an increase of 55% in the 1RM leg-press test, which was significantly higher than the increases in the TG subjects (26%, P = 0.033) and in the CG subjects (0.27%, P < 0.001). The TLG was the only group to show an increase in muscle performance in the isokinetic dynamometry test compared with baseline. The increases in thigh perimeter in the TLG subjects and TG subjects were not significantly different (4.52% and 2.75%, respectively; P = 0.775). Strength training associated with LLLT can increase muscle performance compared with strength training only.
Resumo:
The aim of the present study was to compare oxidative stress biomarkers determined in blood and saliva before and after acute resistance exercise. 1 week after 1 maximum repetition (1RM) test 11 healthy well-trained males completed a hypertrophy acute session of resistance training including 3 sets of 10 repetitions at 75% of the 1RM, with 90s rest periods between sets. Venous blood and saliva samples were collected before (pre) and 10 min after (post) the resistance training session. A significant (p < 0.05) rise in blood lactate accumulation (pre: 1.6 +/- 0.4 vs. post: 9.5 +/- 2.4) was found post-acute resistance training compared with baseline values. Significant increases (p < 0.05) in TBARS (42%), AOPP (28%), uric acid (27%) and GSH (14%) were detected post-acute resistance training in relation to pre in blood samples. A significant increase (p < 0.05) in uric acid (36%) was found in saliva post-acute resistance training as well as a significant correlation (p < 0.05) between uric acid determined in blood and saliva. Statistical analysis did not reveal any other change in the salivary oxidative stress biomarkers. In conclusion, an acute session of resistance exercise induces oxidative stress in plasma of trained men after acute resistance training, which was not found in saliva samples except for uric acid.
Resumo:
Performance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance. An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes. Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage. Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.
Resumo:
O treino competitivo envolve exercício intenso e prolongado, capaz de modular o número e actividade das células imunitárias. Quando demasiado exigente poderá induzir fadiga e aumentar a susceptibilidade a doenças. Esta dissertação apresenta três estudos desenvolvidos no âmbito da Imunologia do Exercício, considerando a análise da resposta celular imunitária sistémica aguda e crónica ao exercício aplicada em situações reais do treino competitivo de natação, controlando factores passíveis de influenciar esta resposta. Pretendeu-se avaliar a resposta imunitária a uma sessão de treino prolongada e intensa, durante as 24h de recuperação (Estudo 1) e a uma época de treino com sete meses (Estudo 2), e estudar a influência de um macrociclo de treino de quatro meses sobre a resposta imunitária à mesma sessão de treino e período de recuperação (Estudo 3), controlando sexo, fases do ciclo menstrual, maturidade, escalão, especialidade, performance, cargas de treino e sintomas respiratórios superiores (URS). A sessão de treino induziu a diminuição da vigilância imunitária adquirida imediatamente e, pelo menos nas 2h seguintes. Juvenis e seniores recuperaram totalmente 24h depois, mas não os juniores, reforçando a ideia da existência de uma janela aberta para a infecção após exercícios prolongados e intensos e sugerindo uma recuperação menos eficiente para os juniores. No período de treino mais intenso da época observou-se uma imunodepressão e maior prevalência de URS. No final da época, a imunidade inata diminuiu aparentando maior sensibilidade aos efeitos cumulativos da carga de treino, enquanto a imunidade adquirida parece ter recuperado após o taper. O macrociclo de treino atenuou a resposta imunitária à sessão de treino e aumentou o período de janela aberta às infecções (efeitos mais acentuados nos adolescentes). Os resultados evidenciam a importância de controlar alterações imunitárias durante a época competitiva, especialmente em períodos de treino intenso e quando se realizam sessões de treino intensas consecutivas com recuperações inferiores a 24h.
Resumo:
Inhibitory control, a core component of executive functions, refers to our ability to suppress intended or ongoing cognitive or motor processes. Mostly based on Go/NoGo paradigms, a considerable amount of literature reports that inhibitory control of responses to "NoGo" stimuli is mediated by top-down mechanisms manifesting ∼200 ms after stimulus onset within frontoparietal networks. However, whether inhibitory functions in humans can be trained and the supporting neurophysiological mechanisms remain unresolved. We addressed these issues by contrasting auditory evoked potentials (AEPs) to left-lateralized "Go" and right NoGo stimuli recorded at the beginning versus the end of 30 min of active auditory spatial Go/NoGo training, as well as during passive listening of the same stimuli before versus after the training session, generating two separate 2 × 2 within-subject designs. Training improved Go/NoGo proficiency. Response times to Go stimuli decreased. During active training, AEPs to NoGo, but not Go, stimuli modulated topographically with training 61-104 ms after stimulus onset, indicative of changes in the underlying brain network. Source estimations revealed that this modulation followed from decreased activity within left parietal cortices, which in turn predicted the extent of behavioral improvement. During passive listening, in contrast, effects were limited to topographic modulations of AEPs in response to Go stimuli over the 31-81 ms interval, mediated by decreased right anterior temporoparietal activity. We discuss our results in terms of the development of an automatic and bottom-up form of inhibitory control with training and a differential effect of Go/NoGo training during active executive control versus passive listening conditions.
Resumo:
Intra-amygdala infusion of the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) prior to testing impairs inhibitory avoidance retention test performance. Increased training attenuates the impairing effects of amygdala lesions and intra-amygdala infusions of CNQX. The objective of the present study was to determine the effects of additional training on the impairing effects of intra-amygdala CNQX on expression of the inhibitory avoidance task. Adult female Wistar rats bilaterally implanted with cannulae into the border between the central and the basolateral nuclei of the amygdala were submitted to a single session or to three training sessions (0.2 mA, 24-h interval between sessions) in a step-down inhibitory avoidance task. A retention test session was held 48 h after the last training. Ten minutes prior to the retention test session, the animals received a 0.5-µl infusion of CNQX (0.5 µg) or its vehicle (25% dimethylsulfoxide in saline). The CNQX infusion impaired, but did not block, retention test performance in animals submitted to a single training session. Additional training prevented the impairing effect of CNQX. The results suggest that amygdaloid non-NMDA receptors may not be critical for memory expression in animals given increased training.
Resumo:
Increased heart rate variability (HRV) and high-frequency content of the terminal region of the ventricular activation of signal-averaged ECG (SAECG) have been reported in athletes. The present study investigates HRV and SAECG parameters as predictors of maximal aerobic power (VO2max) in athletes. HRV, SAECG and VO2max were determined in 18 high-performance long-distance (25 ± 6 years; 17 males) runners 24 h after a training session. Clinical visits, ECG and VO2max determination were scheduled for all athletes during thew training period. A group of 18 untrained healthy volunteers matched for age, gender, and body surface area was included as controls. SAECG was acquired in the resting supine position for 15 min and processed to extract average RR interval (Mean-RR) and root mean squared standard deviation (RMSSD) of the difference of two consecutive normal RR intervals. SAECG variables analyzed in the vector magnitude with 40-250 Hz band-pass bi-directional filtering were: total and 40-µV terminal (LAS40) duration of ventricular activation, RMS voltage of total (RMST) and of the 40-ms terminal region of ventricular activation. Linear and multivariate stepwise logistic regressions oriented by inter-group comparisons were adjusted in significant variables in order to predict VO2max, with a P < 0.05 considered to be significant. VO2max correlated significantly (P < 0.05) with RMST (r = 0.77), Mean-RR (r = 0.62), RMSSD (r = 0.47), and LAS40 (r = -0.39). RMST was the independent predictor of VO2max. In athletes, HRV and high-frequency components of the SAECG correlate with VO2max and the high-frequency content of SAECG is an independent predictor of VO2max.