940 resultados para Tractive forces.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Several factors are implicated in renal stone formation and peak incidence of renal colic admissions to emergency departments (ED). Little is known about the influence of potential environmental triggers such as lunar gravitational forces. We conducted a retrospective study to test the hypothesis that the incidence of symptomatic renal colics increases at the time of the full and new moon because of increased lunar gravitational forces. Methods. We analysed 1500 patients who attended our ED between 2000 and 2010 because of nephrolithiasis-induced renal colic. The lunar phases were defined as full moon ± 1 day, new moon ± 1 day, and the days in-between as "normal" days. Results. During this 11-year period, 156 cases of acute nephrolithiasis were diagnosed at the time of a full moon and 146 at the time of a new moon (mean of 0.4 per day for both). 1198 cases were diagnosed on "normal" days (mean 0.4 per day). The incidence of nephrolithiasis in peak and other lunar gravitational phases, the circannual variation and the gender-specific analysis showed no statistically significant differences. Conclusion. In this adequate powered longitudinal study, changes in tractive force during the different lunar phases did not influence the incidence of renal colic admissions in emergency department.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Research, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: It is known that when barefoot, gait biomechanics of diabetic neuropathic patients differ from nondiabetic individuals. However, it is still unknown whether these biomechanical changes are also present during shod gait which is clinically advised for these patients. This study investigated the effect of the participants own shoes on gait biomechanics in diabetic neuropathic individuals compared to barefoot gait patterns and healthy controls. Methods: Ground reaction forces and lower limb EMG activities were analyzed in 21 non-diabetic adults (50.9 +/- 7.3 yr, 24.3 +/- 2.6 kg/m(2)) and 24 diabetic neuropathic participants (55.2 +/- 7.9 yr, 27.0 +/- 4.4 kg/m(2)). EMG patterns of vastus lateralis, lateral gastrocnemius and tibialis anterior, along with the vertical and antero-posterior ground reaction forces were studied during shod and barefoot gait. Results: Regardless of the disease, walking with shoes promoted an increase in the first peak vertical force and the peak horizontal propulsive force. Diabetic individuals had a delay in the lateral gastrocnemius EMG activity with no delay in the vastus lateralis. They also demonstrated a higher peak horizontal braking force walking with shoes compared to barefoot. Diabetic participants also had a smaller second peak vertical force in shod gait and a delay in the vastus lateralis EMG activity in barefoot gait compared to controls. Conclusions: The change in plantar sensory information that occurs when wearing shoes revealed a different motor strategy in diabetic individuals. Walking with shoes did not attenuate vertical forces in either group. Though changes in motor strategy were apparent, the biomechanical did not support the argument that the use of shoes contributes to altered motor responses during gait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports for the first time an estimation of the internal net joint forces and torques on adults` lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects` apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water`s depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A great deal of works has been developed on the spar vortex-induced motion (VIM) issue. There are, however, very few published works concerning VIM of monocolumn platforms, partly due to the fact that the concept is fairly recent and the first unit was only installed last year. In this context, a meticulous study on VIM for this type of platform concept is presented here. Model test experiments were performed to check the influence of many factors on VIM, such as different headings, wave/current coexistence, different drafts, suppression elements, and the presence of risers. The results of the experiments presented here are motion amplitudes in both in-line and transverse directions, forces and added-mass coefficients, ratios of actual oscillation and natural periods, and motions in the XY plane. This is, therefore, a very extensive and important data set for comparisons and validations of theoretical and numerical models for VIM prediction. [DOI: 10.1115/1.4001440]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the dynamic mechanisms of the mechanical milling process in a vibratory mill, it is necessary to determine the characteristics of the impact forces associated with the collision events. However, it is difficult to directly measure the impact force in an operating mill. This paper describes an inverse technique for the prediction of impact forces from acceleration measurements on a vibratory ball mill. The characteristics of the vibratory mill have been investigated by the modal testing technique, and its system modes have been identified. In the modelling of the system vibration response to the impact forces, two modal equations have been used to describe the modal responses. The superposition of the modal responses gives rise to the total response of the system. A method based on an optimisation approach has been developed to predict the impact forces by minimising the difference between the measured acceleration of the vibratory ball mill and the predicted acceleration from the solution of the modal equations. The predicted and measured impact forces are in good agreement. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. We aimed at investigating the influence of diabetic neuropathy and previous history of plantar ulcers on electromyography (EMG) of the thigh and calf and on vertical ground reaction forces during gait. Methods. This study involved 45 adults divided into three groups: a control group (n = 16), diabetic neuropathic group (n = 19) and diabetic neuropathic group with previous history of plantar ulceration (it = 10). EMG of the right vastus lateralis, lateral gastrocnemius and tibialis anterior were studied during the stance phase. The peaks and time of peak occurrence were determined and a co-activation index between tibialis anterior and lateral gastrocnemius. In order to represent the effect of the changes in EMG, the first and second peaks and the minimum value of the vertical ground reaction force were also determined. Inter-group comparisons of the electromyographical and ground reaction forces variables were made using three MANCOVA (peaks and times of EMG and peaks of force) and one ANCOVA (co-activation index). Findings. The ulcerated group presented a delayed in the time of the lateral gastrocnemius and vastus lateralis peak occurrence in comparison to control`s. The lateral gastrocnemius delay may be related to the lower second vertical peak in diabetic subjects. However, the delay of the vastus lateralis did not cause any significant change on the first vertical peak. Interpretations. The vastus lateralis and lateral gastrocnemius delay demonstrate that ulcerated diabetic neuropathic patients have a motor deficit that could compromise their ability to walk, which was partially confirmed by changes on ground reaction forces during the push-off phase. (c) 2007 Elsevier Ltd. All rights reserved.