984 resultados para Toxoplasma gondii DNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite toxoplasmosis being a common infection among human and other warm-blooded animals worldwide, there are no findings about Toxoplasma gondii evolutionary forms in ancient populations. The molecular techniques used for amplification of genetic material have allowed recovery of ancient DNA (aDNA) from parasites contained in mummified tissues. The application of polymerase chain reaction (PCR) to paleoparasitological toxoplasmosis research becomes a promising option, since it might allow diagnosis, acquisition of paleoepidemiological data, access to toxoplasmosis information related origin, evolution, and distribution among the ancient populations.Furthermore, it makes possible the analysis of parasite aDNA aiming at phylogenetic studies. To standardize and evaluate PCR applicability to toxoplasmosis paleodiagnostic, an experimental mummification protocol was tested using desiccated tissues from mice infected with the ME49 strain cysts, the chronic infection group (CIG), or infected with tachyzoites (RH strain), the acute infection group (AIG). Tissues were subjected to DNA extraction followed by PCR amplification of T. gondii B1 gene. PCR recovered T. gondii DNA in thigh muscle, encephalon, heart, and lung samples. AIG presented PCR positivity in encephalon, lungs, hearts, and livers. Based on this results, we propose this molecular approach for toxoplasmosis research in past populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to assess the occurrence of antibodies to Toxoplasma gondii and to detect genomic DNA of the parasite in the reproductive organs, fetuses and fetal membranes of sheep in slaughterhouses in the state of Pernambuco, Brazil. The Indirect Immunofluorescence technique (IFA) was used for screening. The Polymerase Chain Reaction (PCR) was used to detect DNA of T. gondii in the animals that were positive in the serology. In the serology, 13/50 samples were positive and genomic DNA of T. gondii was detected in one uterus, tube, ovary, placenta and fetus (heart, brain and umbilical cord) sample from a sheep that was positive in the serology. The present study provides evidence of the occurrence of T. gondii DNA in the organs of the reproductive system, placenta and fetus of a naturally infected sheep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of Toxoplasma gondii (T. gondii) DNA in blood can help to diagnose the disease in its acute phase; however, it must be considered that hemoglobin, present in blood, can inhibit polymerase activity, making impracticable the detection of DNA in samples. Mice were experimentally infected via oral route with ME49 and BTU2 strains cysts and RH strain tachyzoites; polymerase chain reaction was used to detect T. gondii DNA in mice sera 18, 24, 48, 96, and 192 hours post infection (PI). Toxoplama gondii DNA was detected in only one animal infected with BTU2 strain, genotype III (isolated from a dog with neurological signs) 18 hours PI. The agent's DNA was not detected in any sample of the other experimental groups. New studies must be carried out to verify the technique sensitivity in researches on this agent's genetic material using sera samples of acute-phase toxoplasmosis patients, especially in cases of immunosuppression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male sheep of reproductive age were distributed into three groups: GI, a sheep inoculated (oral) with 2.0×105 oocysts of the P strain of Toxoplasma gondii; GII, a sheep infected (subcutaneous) with 1.0×106 tachyzoites of the RH strain of T. gondii; and GIII, a sheep kept as a control (not infected). After the inoculation of the males, 12 breeding ewes, which were not pregnant and which were serologically negative for reproductive diseases (particularly toxoplasmosis), were distributed into three groups, synchronized, and subsequently exposed to natural mating with previously inoculated males. The distribution was as follows: five ewes that underwent natural mating with the GI male, five ewes that were exposed to natural mating with the GII male, and two ewes that were mated with the non-infected male (control). Serum samples of all the ewes were collected on days -30, -14, -7, -1, and 0 (days before natural mating) and on days 1, 3, 5, 7, 11, 14, and weekly until birth; the presence of serum antibodies against T. gondii was assessed by IFAT. Using a bioassay and PCR, T. gondii was isolated from the semen of the infected reproducing sheep before mating. Following natural mating, 5 of the 12 females displayed antibodies specific for T. gondii; of these animals, two of the ewes underwent natural mating with the male inoculated with oocysts (GI) and three with the male infected with tachyzoites (GII). One of the females that displayed antibodies specific to this coccidian and that underwent natural mating with the GII sheep had a macerated fetus on the 70th day following coverage. Using a bioassay after the birth, it was possible to isolate T. gondii from samples of the pool of tissues from the five females that seroconverted after natural mating and from their respective lambs. Using PCR, the DNA of T. gondii was isolated from the pool of tissues from one and two females exposed to natural mating with the reproductive males infected with the oocysts and tachyzoites, respectively. Using this technique, it was also possible to diagnose the presence of the parasite in the pool of tissues from the lambs of one female that underwent natural mating with the male sheep infected with oocysts. These results demonstrated the sexual transmission of T. gondii in the sheep species with consequent vertical transmission to their lambs. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the genetic characteristics of Toxoplasma gondii samples collected from 62 patients with toxoplasmosis in Sao Paulo State, Brazil. DNA samples were isolated from blood, cerebrospinal fluid and amniotic fluids of 25 patients with cerebral toxoplasmosis and AIDS, two patients with acute toxoplasmosis, 12 patients with ocular toxoplasmosis, six newborns with congenital toxoplasmosis and 17 pregnant women with acute infection. Diagnosis of toxoplasmosis was based in clinical, radiological and laboratory features. Genotyping was performed using multilocus PCR-RFLP genetic markers including SAG1, SAG2, 5`- and 3`-SAG2, alt.SAG2, SAG3, BTUB, GRA6, C22-8, c29-2, L358, PK1 and Apico. Among the 62 clinical samples, 20 (32%) were successfully genotyped at eight or more genetic loci and were grouped to three distinct genotypes. Eighteen samples belonged to ToxoDB Genotype #65 and the other two samples were identified as ToxoDB Genotypes #6 and #71, respectively (http://toxodb.org/toxo/). Patients presenting Genotypes #6 and #71 had severe and atypical cerebral toxoplasmosis, characterized by diffuse encephalitis without extensive brain lesions. These results indicate that T. gondii Genotype #65 may have a high frequency in causing human toxoplasmosis in Sao Paulo State, Brazil. This unusual finding highlights the need to investigate the possible association of parasite genotypes with human toxoplasmosis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies found that isolates of Toxoplasma gondii from Brazil were biologically and genetically different from those in North America and Europe. However, to date only a small number of isolates have been analysed from different animal hosts in Brazil. In the present study DNA samples of 46 T. gondii isolates from cats in 11 counties in Sao Paulo state, Brazil were genetically characterised using 10 PCR restriction fragment length polymorphism markers including SAG1, SAG2, SAG3, STUB, GRA6, c22-8, c29-2, L358, PKI and Apico. An additional marker, CS3, that locates on chromosome VIIa and has previously been shown to be linked to acute virulence of T. gondii was also used to determine its association to virulence in mice. Genotyping of these 46 isolates revealed a high genetic diversity with 20 genotypes but no clonal Type I, II or III lineage was found. Two of the 46 isolates showed mixed infections. Combining genotyping data in this study with recent reported results from chickens, dogs and cats in Brazil (total 125 isolates) identified 48 genotypes and 26 of these genotypes had single isolates. Four of the 48 genotypes with multiple isolates identified from different hosts and locations are considered the common clonal lineages in Brazil. These lineages are designated as Types BrI, BrII, BrIII and BrIV. These results indicate that the T. gondii population in Brazil is highly diverse with a few successful clonal lineages expanded into wide geographical areas. In contrast to North America and Europe, where the Type II clonal lineage is overwhelmingly predominant, no Type II strain was identified from the 125 Brazil isolates. Analysis of mortality rates in infected mice indicates that Type BrI is highly virulent, Type BrIII is non-virulent, whilst Type BrII and BrIV lineages are intermediately virulent. In addition, allele types at the CS3 locus are strongly linked to mouse-virulence of the parasite. Thus, T. gondii has an epidemic population structure in Brazil and the major lineages have different biological traits. (C) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine if Toxoplasma gondii are present in oysters (Crassostrea rhizophorae) and mussels (Mytella guyanensis) under natural conditions using a bioassay in mice and molecular detection methods. We first compared two standard protocols for DNA extraction, phenol-chloroform (PC) and guanidine-thiocyanate (GT), for both molluscs. A total of 300 oysters and 300 mussels were then acquired from the fish market in Santos city, Sao Paulo state, Brazil, between March and August of 2008 and divided into 60 groups of 5 oysters and 20 groups of 15 mussels. To isolate the parasite, five mice were orally inoculated with sieved tissue homogenates from each group of oysters or mussels. For molecular detection of T. gondii, DNA from mussels was extracted using the PC method and DNA from oysters was extracted using the GT method. A nested-PCR (Polymerase Chain Reaction) based on the amplification of a 155 bp fragment from the B1 gene of T. gondii was then performed. Eleven PCR-RFLP (Restriction Fragment Length Polymorphism) markers, SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, CS3 and Apico, were used to genotype positive samples. There was no isolation of the parasite by bioassay in mice. T. gondii was not detected in any of the groups of mussels by nested-PCR. DNA of T. gondii was apparently detected by nested-PCR in 2 groups of oysters (3.3%). Genotyping of these two positive samples was not successful. The results suggest that oysters of the species C. rhizophorae, the most common species from the coast of Sao Paulo, can filter and retain T. gondii oocysts from the marine environment. Ingestion of raw oysters as a potential transmission source of T. gondii to humans and marine mammals should be further investigated. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Toxoplasma gondii and Neospora caninum are related Apicomplexa parasites responsible for systemic diseases in many species of animals, including dogs. METHODS: This study aimed to determine the occurrence of T. gondii and N. caninum infections in 50 dogs with neurological signs that were admitted to the Veterinary Hospital of Universidade Estadual Paulista, City of Botucatu, Brazil. All animals were screened for antibodies using an immunofluorescent antibody test for both parasites. Tissues of positive animals were bioassayed in mice (T. gondii) and gerbils (N. caninum), and DNA was analyzed using the polymerase chain reaction (PCR). Positive samples for T. gondii by PCR were typed using restriction fragment length polymorphism-PCR for 11 markers: SAG1, SAG2 (5′-3′-SAG2 and alt.SAG2), SAG3, Btub, GRA6, L358, c22-8, c29-6, PK1 and Apico, and CS3 marker for virulence analysis. RESULTS: Specific antibodies were detected in 11/50 (22%; 95% confidence interval (CI95%), 12.8-35.3%) animals for T. gondii and 7/50 (14%; CI95%, 7.02-26.3%) for N. caninum. In the bioassay and PCR, 7/11 (63.6%; CI95%, 34.9-84.8%) samples were positive for T. gondii and 3/7 (42.9%; CI95%I, 15.7-75.5%) samples were positive for N. caninum. Three different genotypes were identified, but only 1 was unique. CONCLUSIONS: These data confirm the presence of T. gondii and N. caninum in dogs from Brazil, indicating the importance of this host as a sentinel of T. gondii for human beings, and the genotypic variation of this parasite in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid and simple technique for the purification of Toxoplasma gondii tachyzoites was developed. Highly purified parasites were obtained from the peritoneal exudates of infected mice by means of two consecutive discontinous sucrose gradients run at low speed (10,000xg, 30 min). Parasites obtained by this method conserved its biological activity. Hybridizations tudies with DNA from healthy mice and from purified tachyzoites preparations demonstrated that Toxoplasma gondii tachyzoites DNA could be obtained with better than 90 per cents purity. Preliminary studies with DNA endonucleases showed the presence in the tachyzoites genome of highly repetitives sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess reinfection of BALB/c mice with different Toxoplasma gondii strains, the animals were prime infected with the non-virulent D8 strain and challenged with virulent recombinant strains. Thirty days after challenge, brain cysts were obtained from surviving BALB/c mice and inoculated in Swiss mice to obtain tachyzoites for DNA extraction and PCR-RFLP analysis to distinguish the different T. gondii strains present in possible co-infections. Anti-Toxoplasma immune responses were evaluated in D8-primed BALB/c mice by detecting IFN-³ and IL-10 produced by T cells and measuring immunoglobulin levels in serum samples. PCR-RFLP demonstrated that BALB/c mice were reinfected with the EGS strain at 45 days post prime infection (dpi) and with the EGS and CH3 strains at 180 dpi. High levels of IFN-³ were detected after D8 infection, with no significant difference between 45 and 180-day intervals. However, higher IL-10 levels and higher plasmatic IgG1 and IgA were detected from samples obtained 180 days after infection. BALB/c mice were susceptible to reinfection with different recombinant T. gondii strains and this susceptibility correlated with enhancement of IL-10 production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is a vehicle for disseminating human and veterinary toxoplasmosis due to oocyst contamination. Several outbreaks of toxoplasmosis throughout the world have been related to contaminated drinking water. We have developed a method for the detection of Toxoplasma gondii oocysts in water and we propose a strategy for the detection of multiple waterborne parasites, including Cryptosporidium spp. and Giardia. Water samples were filtered to recover Toxoplasma oocysts and, after the detection of Cryptosporidium oocysts and Giardia cysts by immunofluorescence, as recommended by French norm procedure NF T 90-455, the samples were purified on a sucrose density gradient. Detection of Toxoplasma was based on PCR amplification and mouse inoculation to determine the presence and infectivity of recovered oocysts. After experimental seeding assays, we determined that the PCR assay was more sensitive than the bioassay. This strategy was then applied to 482 environmental water samples collected since 2001. We detected Toxoplasma DNA in 37 environmental samples (7.7%), including public drinking water; however, none of them were positive by bioassay. This strategy efficiently detects Toxoplasma oocysts in water and may be suitable as a public health sentinel method. Alternative methods can be used in conjunction with this one to determine the infectivity of parasites that were detected by molecular methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to quantify Toxoplasma gondii in tissue samples of serologically positive chickens using real-time polymerase chain reaction (PCR). Of 65 chickens evaluated, 28 were positive for T. gondii antibodies. Brain and heart samples were collected from 26 seropositive chickens and DNA was extracted using Trizol® and amplified using real-time PCR with SYBR® Green. Parasite DNA was detected in 24 of the 26 samples analyzed; the number of positive tissue samples and the parasite quantity did not differ between tissue types. The results confirmed the analytical sensitivity of parasite detection in chicken tissue samples and demonstrated the possibility of using other molecular systems for genotypic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight reproductive boars were divided into three groups and inoculated with Toxoplasma gondii [GI (n=3) 1.5x10(4) oocysts strain P; GII (n=3) 1.0x10(6) tachyzoites strain RH; and GIII (n=2) non-inoculated control]. Clinical, hematological, parasitemia and serological tests and studies of the parasite in the semen through bioassay and PCR, and in reproductive organs (Bioassay and immunohistochemical analyses) were conducted to evaluate the toxoplasmic infection. Blood and semen were collected on day -2, -1, 1, 3, 5, 7, 9, 11, 14 and weekly up to 84 days post-inoculation (DPI). No clinical or hematimetric alteration was observed in the boars. Parasitemia was detected in one boar inoculated with oocysts at the 7th DPI and in another boar infected with tachyzoites (GII) at the 3rd and 49th DPI. Serological tests revealed antibodies against T. gondii in animals inoculated with oocysts or tachyzoites at the 7th DPI with dilutions of 1:256 and 1:64, which reached peaks of 1:4096 at day 11 and 9, respectively. The bioassays revealed the presence of the parasite in semen samples of a boar inoculated with oocysts (GI) at 3, 49 and 56 DPI and from two boars infected with tachyzoites (GII), one animal at 5 and two animals at 49 days DPI. Mice inoculated with semen from the control group (GIII) remained serologically negative. PCR analysis showed T. gondii DNA in the semen of Boar 1 and Boar 3 inoculated with tachyzoites and oocysts, respectively. The immuno-histochemical tests showed T. gondii in the reproductive organs of Boar 1 and Boar 2, inoculated with tachyzoites and oocysts, respectively. These findings suggest the possible occurrence of venereal transmission of T. gondii in swine.