975 resultados para Total load
Resumo:
Mode of access: Internet.
Resumo:
The main contribution of this paper is decomposition/separation of the compositie induction motors load from measurement at a system bus. In power system transmission buses load is represented by static and dynamic loads. The induction motor is considered as the main dynamic loads and in the practice for major transmission buses there will be many and various induction motors contributing. Particularly at an industrial bus most of the load is dynamic types. Rather than traing to extract models of many machines this paper seeks to identify three groups of induction motors to represent the dynamic loads. Three groups of induction motors used to characterize the load. These are the small groups (4kw to 11kw), the medium groups (15kw to 180kw) and the large groups (above 630kw). At first these groups with different percentage contribution of each group is composite. After that from the composite models, each motor percentage contribution is decomposed by using the least square algorithms. In power system commercial and the residential buses static loads percentage is higher than the dynamic loads percentage. To apply this theory to other types of buses such as residential and commerical it is good practice to represent the total load as a combination of composite motor loads, constant impedence loads and constant power loads. To validate the theory, the 24hrs of Sydney West data is decomposed according to the three groups of motor models.
Resumo:
We consider the development of statistical models for prediction of constituent concentration of riverine pollutants, which is a key step in load estimation from frequent flow rate data and less frequently collected concentration data. We consider how to capture the impacts of past flow patterns via the average discounted flow (ADF) which discounts the past flux based on the time lapsed - more recent fluxes are given more weight. However, the effectiveness of ADF depends critically on the choice of the discount factor which reflects the unknown environmental cumulating process of the concentration compounds. We propose to choose the discount factor by maximizing the adjusted R-2 values or the Nash-Sutcliffe model efficiency coefficient. The R2 values are also adjusted to take account of the number of parameters in the model fit. The resulting optimal discount factor can be interpreted as a measure of constituent exhaustion rate during flood events. To evaluate the performance of the proposed regression estimators, we examine two different sampling scenarios by resampling fortnightly and opportunistically from two real daily datasets, which come from two United States Geological Survey (USGS) gaging stations located in Des Plaines River and Illinois River basin. The generalized rating-curve approach produces biased estimates of the total sediment loads by -30% to 83%, whereas the new approaches produce relatively much lower biases, ranging from -24% to 35%. This substantial improvement in the estimates of the total load is due to the fact that predictability of concentration is greatly improved by the additional predictors.
Resumo:
We consider estimating the total load from frequent flow data but less frequent concentration data. There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates that minimizes the biases and makes use of informative predictive variables. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized rating-curve approach with additional predictors that capture unique features in the flow data, such as the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and the discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. Forming this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach for two rivers delivering to the Great Barrier Reef, Queensland, Australia. One is a data set from the Burdekin River, and consists of the total suspended sediment (TSS) and nitrogen oxide (NO(x)) and gauged flow for 1997. The other dataset is from the Tully River, for the period of July 2000 to June 2008. For NO(x) Burdekin, the new estimates are very similar to the ratio estimates even when there is no relationship between the concentration and the flow. However, for the Tully dataset, by incorporating the additional predictive variables namely the discounted flow and flow phases (rising or recessing), we substantially improved the model fit, and thus the certainty with which the load is estimated.
Fuzzy Monte Carlo mathematical model for load curtailment minimization in transmission power systems
Resumo:
This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.
Resumo:
In this paper, the optimal allocation and sizing of distributed generators (DGs) in a distribution system is studied. To achieve this goal, an optimization problem should be solved in which the main objective is to minimize the DGs cost and to maximise the reliability simultaneously. The active power balance between loads and DGs during the isolation time is used as a constraint. Another point considered in this process is the load shedding. It means that if the summation of DGs active power in a zone, isolated by the sectionalizers because of a fault, is less than the total active power of loads located in that zone, the program start shedding the loads in one-by-one using the priority rule still the active power balance is satisfied. This assumption decreases the reliability index, SAIDI, compared with the case loads in a zone are shed when total DGs power is less than the total load power. To validate the proposed method, a 17-bus distribution system is employed and the results are analysed.
Resumo:
To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.
Resumo:
In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.
Resumo:
RATIONALE: The role bacteria play in the progression of COPD has increasingly been highlighted in recent years. However, the microbial community complexity in the lower airways of patients with COPD is poorly characterised.
OBJECTIVES: To compare the lower airway microbiota in patients with COPD, smokers and non-smokers.
METHODS: Bronchial wash samples from adults with COPD (n=18), smokers with no airways disease (n=8) and healthy individuals (n=11) were analysed by extended-culture and culture-independent Illumina MiSeq sequencing. We determined aerobic and anaerobic microbiota load and evaluated differences in bacteria associated with the three cohorts. Culture-independent analysis was used to determine differences in microbiota between comparison groups including taxonomic richness, diversity, relative abundance, 'core' microbiota and co-occurrence.
MEASUREMENT AND MAIN RESULTS: Extended-culture showed no difference in total load of aerobic and anaerobic bacteria between the three cohorts. Culture-independent analysis revealed that the prevalence of members of Pseudomonas spp. was greater in the lower airways of patients with COPD; however, the majority of the sequence reads for this taxa were attributed to three patients. Furthermore, members of Bacteroidetes, such as Prevotella spp., were observed to be greater in the 'healthy' comparison groups. Community diversity (α and β) was significantly less in COPD compared with healthy groups. Co-occurrence of bacterial taxa and the observation of a putative 'core' community within the lower airways were also observed.
CONCLUSIONS: Microbial community composition in the lower airways of patients with COPD is significantly different to that found in smokers and non-smokers, indicating that a component of the disease is associated with changes in microbiological status.
Resumo:
The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and pen-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the Solid Works 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0 degrees), oblique (45 degrees), and lateral (90) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the pen-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).
Resumo:
The present work aims at to approach considerations of trucks suspension design. The proposal of the work consists of discussing the aspects related to the acting of the suspension and of factors that interact with the system through representative models of the dynamic behaviour of the vehicle ride when operating in total load and/or empty conditions. The importance of this work is to revise some procedures of suspension study in the sense of adapting them to the Brazilian reality, tends in view the importance of the design characterisation and adaptation to the typical roads of Brazil. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neste trabalho, propõe-se uma melhoria na estratégia de escalonamento baseada em pesos das classes de tráfego em redes óticas passivas Ethernet – EPON, de modo a não penalizar demasiadamente a classe tipo melhor esforço (BE). Como suporte, desenvolveu-se um modelo híbrido analítico/simulado para análise de desempenho do fluxo de subida, baseado no atraso total de quadros. A modelagem foi feita utilizando Redes de Petri Coloridas Estocásticas (Stochastic Colored Petri Nets - SCPN) da qual se obtém, por simulação, o tamanho médio da fila que posteriormente é usado para, analiticamente, obter-se o atraso total. Não obstante ao crescimento de aplicações multimídia em tempo real, no ano de 2010, o tráfego tradicional na Internet (navegação web, email, mensagens instantâneas) classificado como melhor esforço ainda foi responsável, sozinho (excluindo transferência de arquivos P2P), por valores em torno de 18% do tráfego na Internet. Somando-se a este percentual as aplicações P2P, que também não são essencialmente sensíveis ao atraso, têm-se uma participação de 58% (o tráfego P2P foi no ano de 2010 responsável por aproximadamente 40% do volume total de informações trafegadas na Internet). Mesmo em previsões feitas para o ano de 2014 o tráfego BE ainda representará aproximadamente 40% do volume total de dados a serem trafegados nas redes IPs mundiais. Estes números demonstram que a preocupação com este tipo de tráfego não pode ser relegada a uma importância secundária em detrimento às aplicações que exigem maior qualidade de serviço. Tomando como base o escalonamento IPACT (Interleaved Polling with Adapting Cycle Time) esta dissertação demonstra que é possível, através da melhoria proposta, obter atrasos menores no tráfego de melhor esforço, sem que as classes de tráfego prioritárias ultrapassem as especificações de atraso recomendadas para cada uma destas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)