936 resultados para Tools for image processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study, developed in a mountainous region in Brazil where many landslides occur, is to present a method for detecting landslide scars that couples image processing techniques with spatial analysis tools. An IKONOS image was initially segmented, and then classified through a Batthacharrya classifier, with an acceptance limit of 99%, resulting in 216 polygons identified with a spectral response similar to landslide scars. After making use of some spatial analysis tools that took into account a susceptibility map, a map of local drainage channels and highways, and the maximum expected size of scars in the study area, some features misinterpreted as scars were excluded. The 43 resulting features were then compared with visually interpreted landslide scars and field observations. The proposed method can be reproduced and enhanced by adding filtering criteria and was able to find new scars on the image, with a final error rate of 2.3%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Concise Intro to Image Processing using C++ presents state-of-the-art image processing methodology, including current industrial practices for image compression, image de-noising methods based on partial differential equations, and new image compression methods such as fractal image compression and wavelet compression. It includes elementary concepts of image processing and related fundamental tools with coding examples as well as exercises. With a particular emphasis on illustrating fractal and wavelet compression algorithms, the text covers image segmentation, object recognition, and morphology. An accompanying CD-ROM contains code for all algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automatic image processing and analysis technique has been developed for quantitative characterization of multi-phase materials. For the development of this technique is used the Khoros system that offers the basic morphological tools and a flexible, visual programming language. These techniques are implemented in a highly user oriented image processing environment that allows the user to adapt each step of the processing to his special requirements.To illustrate the implementation and performance of this technique, images of two different materials are processed for microstructure characterization. The result is presented through the determination of volume fraction of the different phases or precipitates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. METHODS: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. RESULTS: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. CONCLUSION: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behaviour analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in Civil Engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road surface macro-texture is an indicator used to determine the skid resistance levels in pavements. Existing methods of quantifying macro-texture include the sand patch test and the laser profilometer. These methods utilise the 3D information of the pavement surface to extract the average texture depth. Recently, interest in image processing techniques as a quantifier of macro-texture has arisen, mainly using the Fast Fourier Transform (FFT). This paper reviews the FFT method, and then proposes two new methods, one using the autocorrelation function and the other using wavelets. The methods are tested on pictures obtained from a pavement surface extending more than 2km's. About 200 images were acquired from the surface at approx. 10m intervals from a height 80cm above ground. The results obtained from image analysis methods using the FFT, the autocorrelation function and wavelets are compared with sensor measured texture depth (SMTD) data obtained from the same paved surface. The results indicate that coefficients of determination (R2) exceeding 0.8 are obtained when up to 10% of outliers are removed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.