983 resultados para ToF-SIMS, PLS, multivariate analysis, funtionalized surfaces
Resumo:
Die grundlegenden Prinzipien und Möglichkeiten der Oberflächencharakterisierung mittels ToF-SIMS (Flugzeit-Sekundärionen Massenspektrometrie) werden an ausgewählten Beispielen aus einem aktuell laufenden und vom BMBF geförderten Verbundforschungsprojekt (Fkz: 03N8022A) zum Thema Nanofunktionalisierung von Grenzflächen vorgestellt. Ein Schwerpunkt innerhalb des Projekts stellen die nichtgeschlossenen Schichtsysteme dar, die entweder über Domänenstrukturen oder einer definierten Einzelfunktionalisierung neuartige funktionelle Oberflächen bereitstellen. Mithilfe der sehr oberflächensensitiven ToF-SIMS Methode sowie der Möglichkeit einer graphischen Darstellung lateraler Molekülionenverteilungen auf funktionalisierten Oberflächen können Informationen über Struktur und Belegungsdichte der Funktionsschicht gewonnen werden. Die Kombination des ToF-SIMS Experimentes und eines multivariaten Algorithmus (partial least squares, PLS) liefert eine interessante Möglichkeit zur quantitativen und simultanen Bestimmung von Oberflächeneigenschaften (Element- und molekulare Konzentrationen sowie Kontaktwinkelwerte). Da das ToF-SIMS Spektrum einer plasmafunktionalisierten Oberfläche im Allgemeinen eine Vielzahl unterschiedlicher Fragmentsignale enthält, lässt eine einfache eindimensionale Korrelation (z.B. CF3 - Fragmentintensität ßà CF3-Konzentration) den größten Teil der im Spektrum prinzipiell enthaltenen Information unberücksichtigt. Aufgrund der großen Anzahl von atomaren und molekularen Signalen, die repräsentativ für die chemische Struktur der analysierten Oberflächen sind, ist es sinnvoll, diese Fülle von Informationen zur Quantifizierung der Oberflächeneigenschaften (Elementkonzentrationen, Kontaktwinkel etc.) zu verwenden. Zusätzlich ermöglicht diese Methode eine quantitative Bestimmung der Oberflächeneigenschaften auf nur µm-großen Bereichen. Das ist vorteilhaft für Untersuchungen chemisch strukturierter Oberflächen, da die Größe der Strukturierung für viele Anwendungen in einem Bereich von mehreren µm liegt. Anhand eines Beispieles aus dem biologisch-medizinischen Fachgebiet, soll der erfolgreiche Einsatz multivariater Modelle aufgezeigt werden. In diesem Experiment wurden menschlichen Bindegewebs- (Fibroblasten) und Pankreaszellen auf plasmafunktionalisiserten Oberflächen kultiviert, um die Beeinflussung der Funktionalisierung auf das Zellwachstum zu untersuchen. Die plasmabehandelten Oberflächen wurden durch die Verwendung von TEM-Gittern mit µm-großen Öffnungen chemisch strukturiert und das Wachstumsverhalten der Zellen beobachtet. Jedem dieser µm-großen Bereiche können mithilfe der multivariaten Modelle quantitative Größen zugeordnet werden (Konzentrationen und Kontaktwinkelwerte), die zur Interpretation des Wachstumsverhaltens der Zellen beitragen.
Resumo:
O conceito de superfície geomórfica permite uma interligação entre os diferentes ramos da ciência do solo, tais como geologia, geomorfologia e pedologia. Esta associação favorece a compreensão da distribuição espacial dos solos na paisagem, e torna possível compreender o comportamento dos atributos do solo, que estão principalmente relacionadas com a estratigrafia e formas do relevo. Assim, este estudo visa à aplicação da estatística multivariada para categorizar superfícies geomórficas em uma litossequência arenito-basalto, de modo a fornecer uma base para a avaliação do solo em áreas afins. A área de estudo está localizada no município de Pereira Barreto, São Paulo, Brasil. A área escolhida possui 530 hectares, onde foram localizadas e mapeadas três superfícies geomórficas (I, II e III). Na área, 134 amostras foram coletadas nas profundidades de 0,0-0,2 m e 0,8-1,0 m, foram determinados os conteúdos de areia, silte e argila, pH em CaCl2, conteúdo de MO, P, Ca, Mg, K, Al e H+Al. Com base nos resultados, foram realizadas a análise univariada e multivariada de variância, clusters e principal componente, a fim de comparar as três superfícies geomórficas. A análise estatística univariada dos atributos do solo não foi eficiente na identificação das três superfícies geomórficas. Utilizando-se os atributos físicos e químicos do solo, as técnicas estatísticas multivariada permitiram à separação dos três grupos de corpos naturais do solo que foram equivalentes as três superfícies geomórficas mapeadas. Estes resultados são interessantes, pois demonstram a viabilidade da utilização de classificação numérica das superfícies geomórficas para ajudar no mapeamento de solo.
Resumo:
Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.
Resumo:
Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.
Resumo:
Phenolic compounds in wastewaters are difficult to treat using the conventional biological techniques such as activated sludge processes because of their bio-toxic and recalcitrant properties and the high volumes released from various chemical, pharmaceutical and other industries. In the current work, a modified heterogeneous advanced Fenton process (AFP) is presented as a novel methodology for the treatment of phenolic wastewater. The modified AFP, which is a combination of hydrodynamic cavitation generated using a liquid whistle reactor and the AFP is a promising technology for wastewaters containing high organic content. The presence of hydrodynamic cavitation in the treatment scheme intensifies the Fenton process by generation of additional free radicals. Also, the turbulence produced during the hydrodynamic cavitation process increases the mass transfer rates as well as providing better contact between the pseudo-catalyst surfaces and the reactants. A multivariate design of experiments has been used to ascertain the influence of hydrogen peroxide dosage and iron catalyst loadings on the oxidation performance of the modified AFP. High er TOC removal rates were achieved with increased concentrations of hydrogen peroxide. In contrast, the effect of catalyst loadings was less important on the TOC removal rate under conditions used in this work although there is an optimum value of this parameter. The concentration of iron species in the reaction solution was measured at 105 min and its relationship with the catalyst loadings and hydrogen peroxide level is presented.
Resumo:
The present work aims at elucidating the technology applied in the fabrication of ceramic objects by the ancient ceramists that inhabited the western border of Pantanal, Mato-Grosso do Sul, with the help of a multidisciplinary approach making use of chemical and physical methods of analysis. The potshards under study show the presence of different types of additives, as determined by scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS). The dispersion of the additives within the ceramic matrix was also addressed by SEM, which shed light on the mounting technique used by the potters to assemble the ceramic vessels. Moreover, the tensile strength conferred to the pottery by the use of a specific type of additive was evaluated by applying a mechanical test. These results were correlated with the firing temperature of the potshards, determined by means of electron paramagnetic resonance (EPR). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Current methods for quality control of sugar cane are performed in extracted juice using several methodologies, often requiring appreciable time and chemicals (eventually toxic), making the methods not green and expensive. The present study proposes the use of X-ray spectrometry together with chemometric methods as an innovative and alternative technique for determining sugar cane quality parameters, specifically sucrose concentration, POL, and fiber content. Measurements in stem, leaf, and juice were performed, and those applied directly in stem provided the best results. Prediction models for sugar cane stem determinations with a single 60 s irradiation using portable X-ray fluorescence equipment allows estimating the % sucrose, % fiber, and POL simultaneously. Average relative deviations in the prediction step of around 8% are acceptable if considering that field measurements were done. These results may indicate the best period to cut a particular crop as well as for evaluating the quality of sugar cane for the sugar and alcohol industries.
Resumo:
The aim of the present study was to evaluate the effect of soil characteristics (pH, macro- and micro-nutrients), environmental factors (temperature, humidity, period of the year and time of day of collection) and meteorological conditions (rain, sun, cloud and cloud/rain) on the flavonoid content of leaves of Passiflora incarnata L., Passifloraceae. The total flavonoid contents of leaf samples harvested from plants cultivated or collected under different conditions were quantified by high-performance liquid chromatography with ultraviolet detection (HPLC-UV/PAD). Chemometric treatment of the data by principal component (PCA) and hierarchic cluster analyses (HCA) showed that the samples did not present a specific classification in relation to the environmental and soil variables studied, and that the environmental variables were not significant in describing the data set. However, the levels of the elements Fe, B and Cu present in the soil showed an inverse correlation with the total flavonoid contents of the leaves of P. incarnata.
Resumo:
In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.
Resumo:
This study aimed to examine the sensory characteristics of the grains of 21 cultivars of Coffea arabica L. and Coffea canephora Pierre from the essays of genetic improvement of EPAMIG, located in Patrocinio Municipality, Minas Gerais State, where they were collected through cloths stripping method and washed. Subsequently to dry (11 to 12% moisture b.u.), we obtained the coffee designated as natural. The evaluated varieties were: Acaia Cerrado MG 1474; Bourbon Vermelho DATERRA; Catigua MG 1; Catigua MG 2; Catual Amarelo IAC 62; Catuai Vermelho IAC 15; H 419-3-1-4-2; H 419-6-2 -5-2; H 419-6-2-5-3; H 419-6-2-7-3 Vermelho; H 493-1-2-10; H 514-7-10-1 Vermelho; H 514-7-10-6; H 515-4-2-2; H 518-3-6-1; Icatu Amarelo IAC 3282; Mundo Novo 379-19; Mundo Novo TAO 376-4; Rubi MG 1192; Sacramento MG 1 and Topazio MG 1190, from 2005/2006 and 2006/2007 seasons. The cultivars according to the first principal component with notes above 80 points, regarded as superior drink according to attributes with the highest scores (flavor, sweetness, balance, acidity, clean drink, and aspect) were: Catigua MG2, Rubi MG 1192, 514-7-10-6 H, H 419-3-1-4-2, H 419-6-2-5-2, 493-1-2-10 H, H 514-7-10-1 Vermelho, Catigua MG1, Sacramento MG1, 419-6-2-5-3 H, H 515-9-2-2 and Catuai Amarelo IAC 62.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Física
Resumo:
Associations between socio-demographic factors, water contact patterns and Schistosoma mansoni infection were investigated in 506 individuals (87% of inhabitants over 1 year of age) in an endemic area in Brazil (Divino), aiming at determining priorities for public health measures to prevent the infection. Those who eliminated S. mansoni eggs (n = 198) were compared to those without eggs in the stools (n = 308). The following explanatory variables were considered: age, sex, color, previous treatment with schistosomicide, place of birth, quality of the houses, water supply for the household, distance from houses to stream, and frequency and reasons for water contact. Factors found to be independently associated with the infection were age (10-19 and > 20 yrs old), and water contact for agricultural activities, fishing, and swimming or bathing (Adjusted relative odds = 5.0, 2.4, 3.2, 2.1 and 2.0, respectively). This suggests the need for public health measures to prevent the infection, emphasizing water contact for leisure and agricultural activities in this endemic area.
Resumo:
This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.
Resumo:
A cross-sectional case-control study on the association between the reduced work ability and S. japonicum infection was carried out in a moderate endemic area for schistosomiasis japonica in the southern part of Dongting lake in China. A total of 120 cases with reduced work ability and 240 controls paired to the case by age, sex, occupation and without reduced work ability, participated in the study. The mean age for individuals was 37.6 years old (21-60), the ratio of male: female was 60:40, the prevalence of S. japonicum in the individuals was 28.3%. The results obtained in this study showed that the infection of S. japonicum in case and control groups was 49.2% (59/120) and 17.9% (43/240), respectively. Odds ratio for reduced work ability among those who had schistosomiasis was 4.34 (95%), confidence interval was 2.58-7.34, and among those who had S. japonicum infection (egg per gram > 100) was up to 12.67 (95%), confidence interval was 3.64-46.39. After odds ratio was adjusted by multiple logistic regression, it was confirmed that heavier intensity of S. japonicum infection and splenomegaly due to S. japonicum infection were the main risk factors for reduced work ability in the population studied.