915 resultados para Tin oxide, Nanoparticles, Dye-Sensitized Solar Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Für viele Anwendungen von Nanomaterialien sind maßgeschneiderte Produkte wün-schenswert, weswegen ein tiefgreifendes und genaues Wissen der Reaktionsabläufe, die zu diesen Produkten führen, unabdingbar ist. Um dies im Fall von SnO2 zu erreichen, behandelt diese Arbeit die kontrollierte Synthese und genaue Charakterisierung von Nanopartikeln von Zinn(IV) Oxid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge recombination at the conductor substrate/electrolyte interface has been prevented by using efficient blocking layers of TiO(2) compact films in dye-sensitized solar cell photoanodes. Compact blocking layers have been deposited before the mesoporous TiO(2) film by the layer-by-layer technique using titania nanoparticles as cations and sodium sulfonated polystyrene, PSS, as a polyanion. The TiO(2)/PSS blocking layer in a DSC prevents the physical contact of FTO and the electrolyte and leads to a 28% increase in the cell`s overall conversion efficiency, from 5.7% to 7.3%. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO: Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO has received great attention in many applications due to its electronic and optical properties. We report on the preparation of ZnO and gallium-containing ZnO (ZnO:Ga) nanoparticles by the precipitation method. The nanoparticles have the wurtzite structure and a high crystallinity. Gallium ions are present as Ga(3+), as evidenced by the binding energies through XPS. Porosity and surface area of the powder increased under increasing gallium level, explained by the smaller particle size of ZnO:Ga samples compared with ZnO. The estimated optical band gap of ZnO was 3.2 eV, comparable to ZnO:Ga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c. a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dye-sensitized solar cells a blocking layer between the transparent electrode and the mesoporous titanium dioxide film is used to prevent short-circuits between the hole-conductor and the front electrode. The conventional approach is to use a compact layer of titanium dioxide prepared by spin coating or spray pyrolysis. The thickness of the blocking layer is critical. On one hand, the layer has to be thick enough to cover the rough substrate completely. On the other hand, the serial resistance increases with increasing film thickness, because the layer acts as an ohmic resistance itself. In this thesis an amphiphilic diblock copolymer is used as a functional template to produce an alternative, hybrid blocking layer. The hybrid blocking layer is thinner than the conventional, compact titanium dioxide film and thereby possesses a higher conductivity. Still, this type of blocking layer covers the rough electrode material completely and avoids current loss through charge recombination. The novel blocking layer is prepared using a tailored, amphiphilic block copolymer in combination with sol-gel chemistry. While the hydrophilic poly(ethylene oxide) part of the polymer coordinates a titanium dioxide precursor to form a percolating network of titania particles, the hydrophobic poly(dimethylsiloxane) part turns into an insulating ceramic layer. With this technique, crack-free films with a thickness down to 24 nm are obtained. The presence of a conductive titanium dioxide network for current flow, which is embedded in an insulating ceramic material, is validated by conductive scanning force microscopy. This is the first time that such a hybrid blocking layer is implemented in a solar cell. With this approach the efficiency could be increased up to 27 % compared to the conventional blocking layer. Thus, it is demonstrated that the hybrid blocking layer represents a competitive alternative to the classical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Doktorarbeit befasst sich mit Ladungsgeneration und – rekombination in Feststoff-Farbstoffsolarzellen, die spiro-OMeTAD als Lochleiter verwenden. Die vorliegende Arbeit ist in drei Fallstudien unterteilt: i.) Kern-erweiterte Rylen-Farbstoffe, ii.) ein Perylenmonoimid-Farbstoff und iii.) Donor-π verbrückte (Cyclopentadithiophen)-Akzeptor-Farbstoffe. Trotz ihres hohen molaren Extinktionskoeffizienten und der hohen Absorbanz der sensibilisierten Filme, zeigen einige dieser Farbstoffmoleküle nur geringe photovoltaischen Effizienzen. Um den Ursprung des geringen Wirkungsgrades herauszufinden, wurde breitbandige, ultraschnelle transiente Absorptionsspektroskopie an Solarzellen durchgeführt.rnInsbesondere die Auswirkungen verschiedender Ankergruppen, Dipolmomente, Photolumineszenzlebenszeiten, Lithium-Kationensensitivität und Ladungsträgerdynamik, die alle einen großen Einfluss auf den Wirkungsgrad der Solarzelle besitzen, wurden untersucht. In der ersten Fallstudie zeigte ein kurzer Rylen-Farbstoff aufgrund deutlich verlängerter Lebenszeiten die beste Effizienz im Vergleich zu größeren Kern-erweiterten Rylen-Farbstoffen. Die Lebenszeit wurde weiter reduziert, wenn Maleinsäure als Ankergruppe unter einer Ringöffnungsreaktion an die mesoporöse Oberfläche des Metalloxid-Halbleiters adsorbierte. Dies konnte mit Hilfe von Berechnungen mittels der Dichtefunktionaltheorie (DFT, B3LYP) auf die Differenz des Dipolmoments zwischen Grundzustand und angeregtem Zustand zurückgeführt werden. Die Berechnungen bekräftigen die unvorteilhafte Injektion von Ladungen durch die Änderung der Richtung des Dipolmoments, wenn eine Ringöffnung der Anhydridgruppe stattfindet. In der zweiten Studie zeigte das Perylenmonoimid-Derivat ID889 einen Wirkungsgrad von 4.5% in Feststoff-Farbstoffsolarzellen, wobei ID889 sogar ohne Zuhilfenahme eines Additivs in der Lage ist langlebige Farbstoffkationen zu bilden. Die Verwendung von Lithium-Kationen stabilisiert jedoch sowohl den Prozess der Ladungsgeneration als auch den der Ladungsregeneration. Des Weiteren wurde in ID889-sensitivierten Bauteilen kein reduktives Löschen beobachtet. Dabei wurde die Dynamik der Exzitonen mittels einer soft-modelling Methode Kurvenanalyse aus den Daten der transienten Absorptionsspektroskopie gewonnen. Zuletzt wurden Strukturen mit Cyclopentadithiophen(CPDT)-Baustein untersucht, die eine typische D-π-A Molekülstruktur bilden. FPH224 und 233 zeigten dabei eine bessere Effizienz als FPH231 und 303 aufgrund einer großen Injektionseffizienz (IE) und längerer Lebenszeit der angeregten Zustände. Dies kann auf reduktives Löschen in FPH231 und 303 zurückgeführt werden, wohingegen FPH224 und 233 einen moderaten Zerfall des Spirokationensignals zeigten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium oxide is an important semiconductor, which is widely applied for solar cells. In this research, titanium oxide nanotube arrays were synthesized by anodization of Ti foil in the electrolyte composed of ethylene glycol containing 2 vol % H2O and 0.3 wt % NH4F. The voltages of 40V-50V were employed for the anodizing process. Pore diameters and lengths of the TiO2 nanotubes were evaluated by field emission scanning electron microscope (FESEM). The obtained highly-ordered titanium nanotube arrays were exploited to fabricate photoelectrode for the Dye-sensitized solar cells (DSSCS). The TiO2 nanotubes based DSSCS exhibited an excellent performance with a high short circuit current and open circuit voltage as well as a good power conversion efficiency. Those can be attributed to the high surface area and one dimensional structure of TiO2 nanotubes, which could hold a large amount of dyes to absorb light and help electron percolation process to hinder the recombination during the electrons diffusion in the electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of human life depends to a large degree on the availability of energy. In recent years, photovoltaic technology has been growing extraordinarily as a suitable source of energy, as a consequence of the increasing concern over the impact of fossil fuels on climate change. Developing affordable and highly efficiently photovoltaic technologies is the ultimate goal in this direction. Dye-sensitized solar cells (DSSCs) offer an efficient and easily implementing technology for future energy supply. Compared to conventional silicon solar cells, they provide comparable power conversion efficiency at low material and manufacturing costs. In addition, DSSCs are able to harvest low-intensity light in diffuse illumination conditions and then represent one of the most promising alternatives to the traditional photovoltaic technology, even more when trying to move towards flexible and transparent portable devices. Among these, considering the increasing demand of modern electronics for small, portable and wearable integrated optoelectronic devices, Fibre Dye-Sensitized Solar Cells (FDSSCs) have gained increasing interest as suitable energy provision systems for the development of the next-generation of smart products, namely “electronic textiles” or “e-textiles”. In this thesis, several key parameters towards the optimization of FDSSCs based on inexpensive and abundant TiO2 as photoanode and a new innovative fully organic sensitizer were studied. In particular, the effect of various FDSSCs components on the device properties pertaining to the cell architecture in terms of photoanode oxide layer thickness, electrolytic system, cell length and electrodes substrates were examined. The photovoltaic performances of the as obtained FDSSCs were fully characterized. Finally, the metal part of the devices (wire substrate) was substituted with substrates suitable for the textile industry as a fundamental step towards commercial exploitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 ◦C has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 ◦C has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 ◦C has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 ◦C substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ,24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.