954 resultados para Time-resolved SORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy, when used in spatially offset mode, has become a potential tool for the identification of explosives and other hazardous substances concealed in opaque containers. The molecular fingerprinting capability of Raman spectroscopy makes it an attractive tool for the unambiguous identification of hazardous substances in the field. Additionally, minimal sample preparation is required compared with other techniques. We report a field portable time resolved Raman sensor for the detection of concealed chemical hazards in opaque containers. The new sensor uses a pulsed nanosecond laser source in conjunction with an intensified CCD detector. The new sensor employs a combination of time and space resolved Raman spectroscopy to enhance the detection capability. The new sensor can identify concealed hazards by a single measurement without any chemometric data treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quinones and their radical ion intermediates have been much studied by vibrational spectroscopy to understand their structure-function relationships in various biological processes. In this paper, we present a comprehensive analysis of vibrational spectra in the structure-sensitive region of both the naphthoquinone (NQ) and 2-methyl-1,4-naphthoquinone (MQ, menaquinone) radical anions using time-resolved resonance Raman and ab initio studies. Specific vibrational mode assignments have been made to all the vibrational frequencies recorded in the experiment. It is observed that the carbonyl and C-C stretching frequencies show considerable coupling in NQ and MQ radical anions. Further, the asymmetric substitution present in MQ with respect to NQ shows important signatures in the radical anion spectrum. It is concluded that assignments of vibrational frequencies of asymmetrically substituted quinones must take into consideration the influence of asymmetry on structure and reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory for time-resolved, pump-probe, photoemission spectroscopy and other pump-probe experiments is developed. The formal development is completely general, incorporating all of the nonequilibrium effects of the pump pulse and the finite time width of the probe pulse, and including possibilities for taking into account band structure and matrix element effects, surface states, and the interaction of the photoexcited electrons with the system leading to corrections to the sudden approximation. We also illustrate the effects of windowing that arise from the finite width of the probe pulse in a simple model system by assuming the quasiequilibrium approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we theoretically examine recent pump/probe photoemission experiments on the strongly correlated charge-density-wave insulator TaS2.We describe the general nonequilibrium many-body formulation of time-resolved photoemission in the sudden approximation, and then solve the problem using dynamical mean-field theory with the numerical renormalization group and a bare density of states calculated from density functional theory including the charge-density-wave distortion of the ion cores and spin-orbit coupling. We find a number of interesting results: (i) the bare band structure actually has more dispersion in the perpendicular direction than in the two-dimensional planes; (ii) the DMFT approach can produce upper and lower Hubbard bands that resemble those in the experiment, but the upper bands will overlap in energy with other higher energy bands; (iii) the effect of the finite width of the probe pulse is minimal on the shape of the photoemission spectra; and (iv) the quasiequilibrium approximation does not fully describe the behavior in this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved fluorescence studies were carried out on a series of free-base and zinc(II) derivatives of meso-tetraphenylporphyrins covalently linked to either 1,3-dinitrobenzene (DNB) or 1,3,5-trinitrobenzene (TNB) acceptor units. These acceptor units were linked at different sites (at the ortho, meta or para positions of one of the phenyl groups of meso-tetraphenylporphyrin) to the donor porphyrins such that the resulting isomeric intramolecular donor-acceptor complexes exhibit different centre-to-centre (ctc) distances and relative orientations. Biexponential fluorescence decay profiles observed for several of these covalently linked complexes were rationalized in terms of the presence of ''closed'' and ''extended'' conformers. Detailed analyses of the fluorescence decay data have provided a comprehensive understanding of the photoinduced electron transfer (PET) reactions occurring in systems containing zinc(II) porphyrin donors. It is observed that although DNB-linked zinc(II) complexes follow the trends predicted for the efficiency of PET with respect to donor-acceptor distance, the TNB-linked zinc(II) porphyrins exhibit a behaviour which is dictated by steric effects. Similarly, although the thermodynamic criteria predict a greater efficiency of charge separation in TNB-linked complexes compared with DNB-linked complexes, the reverse trend observed has been attributed to orientational effects. In the complexes containing free-base porphyrin donors, PET is expected to be less efficient from a thermodynamic viewpoint. In a few of these cases, fluorescence quenching seems to occur by parallel mechanisms other than PET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy has been used to investigate the photochemistry of ubiquinone in cyclohexane, water and ethanol. In water the absorption of a single 248 nm photon produces triplet ubiquinone which then oxidises water, via electron transfer, to form the ubiquinone radical anion. In ethanol, however, the triplet state reacts with the solvent via both electron and hydrogen-atom transfer, the latter process forming the semihydroquinone. Only in the less reactive solvent, cyclohexane, is triplet quinone observed. The Raman bands observed for each of the species are assigned on the basis of similarities of their spectra to other quinones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical expressions which include depletion layer effects on low-injection carrier relaxation are being presented for the first time here. Starting from the continuity equation for the minority carriers, we derive expressions for the output signal pertinent to time-resolved microwave and luminescence experiments. These are valid for the time domain that usually overlaps with the time scales of surface processes, such as charge transfer and trapping. Apart from the usual pulse form of illumination, theoretical expressions pertaining to other forms of illumination such as switch-on and switch-off transient modes, a periodic mode, and a steady state and their various inter-relationships are derived here. The expressions obtained are seen to be generalizations of existing flat-band low-injection results in the Limit of early or initial band bendings. The importance of the depletion layer as an experimental parameter is clearly seen in the limit of larger band bendings wherein it is shown, unlike the flat-band case, to exhibit pure exponential forms of carrier relaxation. Our results are consistent with the main conclusions of the numerical and experimental work published recently. Furthermore, this work provides the actual functional relationships between the applied potential and observed carrier decay. This should enable one to extract the surface kinetic parameters, after deciding on the dominant mode of carrier relaxation at the interface, whether charge transfer or trapping, by studying the potential dependence of the fate of relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perfluoro substituted organic compounds have attracted attention owing to their unique structure and reactivity induced by the perfluoro effect. Fluoranil, a perfluoro derivative of p-benzoquinone, is the subject of this paper. Although the perfluoro effect in the ground state seems to have been well understood there is no information available about such effects on the excited state. Here, the time-resolved resonance Raman spectra of the triplet excited state of fluoranil are reported along with the Raman excitation profiles (REPs) of the various vibrational modes. The vibrational spectral analyses have been carried out by analogy with the fluoranil ground state, triplet benzoquinone, and triplet chloranil vibrational spectral assignments. Also, the assignments are further supported by the calculated frequencies using ab initio theoretical methods. It is observed that for fluoranil in the triplet excited state, due to the perfluoro effect, the structure is considerably less distorted than benzoquinone and also the electron delocalization in the pi* antibonding orbital is less than that of triplet excited state of benzoquinone.