941 resultados para Three term control systems
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results for the design of proportional plus integral plus derivative (PID) controllers concerning a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. © 2005 IEEE.
Resumo:
Constraints are widely present in the flight control problems: actuators saturations or flight envelope limitations are only some examples of that. The ability of Model Predictive Control (MPC) of dealing with the constraints joined with the increased computational power of modern calculators makes this approach attractive also for fast dynamics systems such as agile air vehicles. This PhD thesis presents the results, achieved at the Aerospace Engineering Department of the University of Bologna in collaboration with the Dutch National Aerospace Laboratories (NLR), concerning the development of a model predictive control system for small scale rotorcraft UAS. Several different predictive architectures have been evaluated and tested by means of simulation, as a result of this analysis the most promising one has been used to implement three different control systems: a Stability and Control Augmentation System, a trajectory tracking and a path following system. The systems have been compared with a corresponding baseline controller and showed several advantages in terms of performance, stability and robustness.
Resumo:
The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).
Resumo:
Evaluation of three solar and daylighting control systems based on Calumen II, Ecotect and Radiance simulation programs to obtain an energy efficient and healthy interior in the experimental building prototype SDE10
Resumo:
Purpose: To assess the effects of three different dental adhesive systems on the formation of secondary root caries, in vitro, with a standardized interfacial gap in a filled cavity model. Methods: 40 sound human molars were selected and randomly assigned to four experimental groups: Clearfil SE Bond (CSEB), Xeno III (X-III), Scotchbond Multi-Purpose Plus (SBMP) and negative control (NC) without an adhesive system. After the standardized Class V cavity preparations on the buccal and lingual surfaces, restorations were placed with resin composite (Filtek Z250) using a standardized interfacial gap, using a 3 x 2 mm piece of 50 mu m metal matrix. The teeth were sterilized with gamma irradiation and exposed to a cariogenic challenge using a bacterial system with Streptococcus mutans. Depth and extension of wall lesions formed and the depth of outer lesions were measured by software coupled with light microscopy. Results: For wall lesion extension the ANOVA test showed differences between groups except between X-HI and SBMP (P= 0.294). The Tukey`s test of confidence intervals indicated smaller values for the CSEB group than for the others. For wall lesion depth the CSEB group also presented the smallest mean values of wall lesion depth when compared to the others (P< 0.0001) for all comparisons using Tukey`s test. Regarding outer lesion depth, all adhesives showed statistically similar behavior. SEM evaluation of the morphologic appearance of caries lesions confirmed the statistical results showing small caries lesion development for cavities restored with CSEB adhesive system, which may suggest that this adhesive system interdiffusion zone promoted a good interaction with subjacent dentin protecting the dental tissues from recurrent caries. (Am J Dent 2010;23:93-97).
Resumo:
To evaluate the long-term impact of successive interventions on rates of methicillin-resistant Staphylococcus aureus (MRSA) colonization or infection and MRSA bacteremia in an endemic hospital-wide situation. DESIGN:Quasi-experimental, interrupted time-series analysis. The impact of the interventions was analyzed by use of segmented regression. Representative MRSA isolates were typed by use of pulsed-field gel electrophoresis. SETTING:A 950-bed teaching hospital in Seville, Spain. PATIENTS:All patients admitted to the hospital during the period from 1995 through 2008. METHODS:Three successive interventions were studied: (1) contact precautions, with no active surveillance for MRSA; (2) targeted active surveillance for MRSA in patients and healthcare workers in specific wards, prioritized according to clinical epidemiology data; and (3) targeted active surveillance for MRSA in patients admitted from other medical centers. RESULTS:Neither the preintervention rate of MRSA colonization or infection (0.56 cases per 1,000 patient-days [95% confidence interval {CI}, 0.49-0.62 cases per 1,000 patient-days]) nor the slope for the rate of MRSA colonization or infection changed significantly after the first intervention. The rate decreased significantly to 0.28 cases per 1,000 patient-days (95% CI, 0.17-0.40 cases per 1,000 patient-days) after the second intervention and to 0.07 cases per 1,000 patient-days (95% CI, 0.06-0.08 cases per 1,000 patient-days) after the third intervention, and the rate remained at a similar level for 8 years. The MRSA bacteremia rate decreased by 80%, whereas the rate of bacteremia due to methicillin-susceptible S. aureus did not change. Eighty-three percent of the MRSA isolates identified were clonally related. All MRSA isolates obtained from healthcare workers were clonally related to those recovered from patients who were in their care. CONCLUSION:Our data indicate that long-term control of endemic MRSA is feasible in tertiary care centers. The use of targeted active surveillance for MRSA in patients and healthcare workers in specific wards (identified by means of analysis of clinical epidemiology data) and the use of decolonization were key to the success of the program.
Resumo:
The ability of a soil to keep its structure under the erosive action of water is usually high in natural conditions and decreases under frequent and intensive cultivation. The effect of five tillage systems (NT = no-till; CP = chisel plowing and one secondary disking; CT = primary and two secondary distings; CTb = CT with crop residue burning; and CTr = CT with removal of crop residues from the field), combined with five nutrient sources (C = control, no nutrient application; MF = mineral fertilizers according to technical recommendations for each crop; PL = 5 Mg ha-1 y-1 fresh matter of poultry litter; CM = 60 m³ ha-1 y-1 slurry cattle manure; and SM = 40 m³ ha-1 y-1 slurry swine manure) on wet-aggregate stability was determined after nine years (four sampled soil layers) and on five sampling dates in the 10th year (two sampled soil layers) of the experiment. The size distribution of the air-dried aggregates was strongly affected by soil bulk density, and greater values of geometric mean diameter (GMD AD) found in some soil tillage or layer may be partly due to the higher compaction degree. After nine years, the GMD AD on the surface was greater in NT and CP compared to conventional tillage systems (CT, CTb and CTr), due to the higher organic matter content, as well as less soil mobilization. Aggregate stability in water, on the other hand, was affected by the low variation in previous gravimetric moisture of aggregates, which contributed to a high coefficient of variation of this attribute. The geometric mean diameter of water-stable aggregates (GMD WS) was highest in the 0.00-0.05 m layer in the NT system, in the layers 0.05-0.10 and 0.12-0.17 m in the CT, and values were intermediate in CP. The stability index (SI) in the surface layers was greater in treatments where crop residues were kept in the field (NT, CP and CT), which is associated with soil organic matter content. No differences were found in the layer 0.27-0.32 m. The effect of nutrient sources on GMD AD and GMD WS was small and did not affect SI.
Resumo:
The RPC Detector Control System (RCS) is the main subject of this PhD work. The project, involving the Lappeenranta University of Technology, the Warsaw University and INFN of Naples, is aimed to integrate the different subsystems for the RPC detector and its trigger chain in order to develop a common framework to control and monitoring the different parts. In this project, I have been strongly involved during the last three years on the hardware and software development, construction and commissioning as main responsible and coordinator. The CMS Resistive Plate Chambers (RPC) system consists of 912 double-gap chambers at its start-up in middle of 2008. A continuous control and monitoring of the detector, the trigger and all the ancillary sub-systems (high voltages, low voltages, environmental, gas, and cooling), is required to achieve the operational stability and reliability of a so large and complex detector and trigger system. Role of the RPC Detector Control System is to monitor the detector conditions and performance, control and monitor all subsystems related to RPC and their electronics and store all the information in a dedicated database, called Condition DB. Therefore the RPC DCS system has to assure the safe and correct operation of the sub-detectors during all CMS life time (more than 10 year), detect abnormal and harmful situations and take protective and automatic actions to minimize consequential damages. The analysis of the requirements and project challenges, the architecture design and its development as well as the calibration and commissioning phases represent themain tasks of the work developed for this PhD thesis. Different technologies, middleware and solutions has been studied and adopted in the design and development of the different components and a big challenging consisted in the integration of these different parts each other and in the general CMS control system and data acquisition framework. Therefore, the RCS installation and commissioning phase as well as its performance and the first results, obtained during the last three years CMS cosmic runs, will be
Resumo:
This article presents a cooperative manoeuvre among three dual mode cars – vehicles equipped with sensors and actuators, and that can be driven either manually or autonomously. One vehicle is driven autonomously and the other two are driven manually. The main objective is to test two decision algorithms for priority conflict resolution at intersections so that a vehicle autonomously driven can take their own decision about crossing an intersection mingling with manually driven cars without the need for infrastructure modifications. To do this, the system needs the position, speeds, and turning intentions of the rest of the cars involved in the manoeuvre. This information is acquired via communications, but other methods are also viable, such as artificial vision. The idea of the experiments was to adjust the speed of the manually driven vehicles to force a situation where all three vehicles arrive at an intersection at the same time.
Resumo:
Robotics is a field that presents a large number of problems because it depends on a large number of disciplines, devices, technologies and tasks. Its expansion from perfectly controlled industrial environments toward open and dynamic environment presents a many new challenges, such as robots household robots or professional robots. To facilitate the rapid development of robotic systems, low cost, reusability of code, its medium and long term maintainability and robustness are required novel approaches to provide generic models and software systems who develop paradigms capable of solving these problems. For this purpose, in this paper we propose a model based on multi-agent systems inspired by the human nervous system able to transfer the control characteristics of the biological system and able to take advantage of the best properties of distributed software systems.
Resumo:
This report evaluates the performance of long-term care (LTC) systems in Europe, with a special emphasis on four countries that were selected in Work Package 1 of the ANCIEN project as representative of different LTC systems: Germany, the Netherlands, Spain and Poland. Based on a performance framework, we use the following four core criteria for the evaluation: the quality of life of LTC users, the quality of care, equity of LTC systems and the total burden of LTC (consisting of the financial burden and the burden of informal caregiving). The quality of life is analysed by studying the experience of LTC users in 13 European countries, using data from the Survey of Health, Ageing and Retirement in Europe (SHARE). Older persons with limitations living at home have the highest probability of receiving help (formal or informal) in Germany and the lowest in Poland. Given that help is available, the sufficiency of the help is best ensured in Switzerland, Italy and the Netherlands. The indirectly observed properties of the LTC system are most favourable in France. An older person who considers all three aspects important might be best off living in Belgium or Switzerland. The horizontal and vertical equity of LTC systems are analysed for the four representative countries. The Dutch system scores highest on overall equity, followed by the German system. The Spanish and Polish systems are both less equitable than the Dutch and German systems. To show how ageing may affect the financial burden of LTC, projections until 2060 are given for LTC expenditures for the four representative countries. Under the base scenario, for all four countries the proportions of GDP spent on public and private LTC are projected to more than double between 2010 and 2060, and even treble in some cases. The projections also highlight the large differences in LTC expenditures between the four countries. The Netherlands spends by far the most on LTC. Furthermore, the report presents information for a number of European countries on quality of care, the burden of informal caregiving and other aspects of performance. The LTC systems for the four representative countries are evaluated using the four core criteria. The Dutch system has the highest scores on all four dimensions except the total burden of care, where it has the second-best score after Poland. The German system has somewhat lower scores than the Dutch on all four dimensions. The relatively large role for informal care lowers the equity of the German system. The Polish system excels in having a low total burden of care, but it scores lowest on quality of care and equity. The Spanish system has few extreme scores. Policy implications are discussed in the last chapter of this report and in the Policy Brief based on this report.
Resumo:
Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.
Resumo:
One of the most important recent improvements in cardiology is the use of ventricular assist devices (VADs) to help patients with severe heart diseases, especially when they are indicated to heart transplantation. The Institute Dante Pazzanese of Cardiology has been developing an implantable centrifugal blood pump that will be able to help a sick human heart to keep blood flow and pressure at physiological levels. This device will be used as a totally or partially implantable VAD. Therefore, an improvement on device performance is important for the betterment of the level of interaction with patient`s behavior or conditions. But some failures may occur if the device`s pumping control does not follow the changes in patient`s behavior or conditions. The VAD control system must consider tolerance to faults and have a dynamic adaptation according to patient`s cardiovascular system changes, and also must attend to changes in patient conditions, behavior, or comportments. This work proposes an application of the mechatronic approach to this class of devices based on advanced techniques for control, instrumentation, and automation to define a method for developing a hierarchical supervisory control system that is able to perform VAD control dynamically, automatically, and securely. For this methodology, we used concepts based on Bayesian network for patients` diagnoses, Petri nets to generate a VAD control algorithm, and Safety Instrumented Systems to ensure VAD system security. Applying these concepts, a VAD control system is being built for method effectiveness confirmation.
Resumo:
Safety Instrumented Systems (SIS) are designed to prevent and / or mitigate accidents, avoiding undesirable high potential risk scenarios, assuring protection of people`s health, protecting the environment and saving costs of industrial equipment. The design of these systems require formal methods for ensuring the safety requirements, but according material published in this area, has not identified a consolidated procedure to match the task. This sense, this article introduces a formal method for diagnosis and treatment of critical faults based on Bayesian network (BN) and Petri net (PN). This approach considers diagnosis and treatment for each safety instrumented function (SIF) including hazard and operability (HAZOP) study in the equipment or system under control. It also uses BN and Behavioral Petri net (BPN) for diagnoses and decision-making and the PN for the synthesis, modeling and control to be implemented by Safety Programmable Logic Controller (PLC). An application example considering the diagnosis and treatment of critical faults is presented and illustrates the methodology proposed.