1000 resultados para Thin fi


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum well states of Ag films grown on stepped Au(111) surfaces are shown to undergo lateral scattering, in analogy with surface states of vicinal Ag(111). Applying angle resolved photoemission spectroscopy we observe quantum well bands with zone-folding and gap openings driven by surface/interface step lattice scattering. Experiments performed on a curved Au(111) substrate allow us to determine a subtle terrace-size effect, i.e., a fine step-density-dependent upward shift of quantum well bands. This energy shift is explained as mainly due to the periodically stepped crystal potential offset at the interface side of the film. Finally, the surface state of the stepped Ag film is analyzed with both photoemission and scanning tunneling microscopy. We observe that the stepped film interface also affects the surface state energy, which exhibits a larger terrace-size effect compared to surface states of bulk vicinal Ag(111) crystals

Relevância:

60.00% 60.00%

Publicador:

Resumo:

abstract {The optical property, structure, surface properties (roughness and defect density) and laser-induced damage threshold (LIDT) of TiO2 films deposited by electronic beam (EB) evaporation of TiO2 (rutile), TiO2 (anatase) and TiO2 + Ta2O5 composite materials are comparatively studied. All films show the polycrystalline anatase TiO2 structure. The loose sintering state and phase transformation during evaporating TiO2 anatase slice lead to the high surface defect density, roughness and extinction coefficient, and low LIDT of films. The TiO2 + Ta2O5 composite films have the lowest extinction coefficient and the highest LIDT among all samples investigated. Guidance of selecting materials for high LIDT laser mirrors is given.}

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As energias renováveis têm estado em destaque desde o fi nal do século XX. São vários os motivos para que isto esteja a acontecer. As previsões apontam para problemas de depleção das reservas de combustíveis fósseis, nomeadamente o petróleo e gás natural, durante o presente século. O carvão, ainda abundante, apresenta problemas ambientais signi cativos. Os perigos associados à energia nuclear estão fazer com que os governos de vários países repensem as suas políticas energéticas . Todas estas tecnologias têm fortes impactos ambientais. Considerando o conjunto das energias renováveis, a energia solar fotovoltaica tem ainda um peso menor no panorama da produção energética actual. A explicação para este facto deve-se ao custo, ainda elevado, dos sistemas fotovoltaicos. Várias iniciativas governamentais estão em curso, a SET for 2020 (UE) e a Sunshot (EUA), para o desenvolvimento de tecnologias que façam frente a este problema. A fatia de mercado que a tecnologia de filmes fi nos representa ainda é pequena, mas tem vindo a aumentar nos últimos anos. As vantagens relativamente à tecnologia tradicional baseada em Si são várias, como por ex. os custos energéticos e materiais para a fabricação das células. Esta dissertação apresenta um processo de fabricação de células solares em fi lmes finos usando como camada absorvente um novo composto semicondutor, o Cu2ZnSnS4, que apresenta como grande argumento, relativamente aos seus predecessores, o facto de ser constituído por elementos abundantes e de toxicidade reduzidas. Foi realizado um estudo sobre as condições termodinâmicas de crescimento deste composto, bem como a sua caracterização e das células solares finais. Este trabalho inclui um estudo dos compostos ternários, CuxSnSx+1 e compostos binários SnxSy, justi cado pelo facto de surgirem como fases secundárias no crescimento do Cu2ZnSnS4. Em seguida são descritos resumidamente os vários capítulos que constituem esta tese. No capítulo 1 é abordada de forma resumida a motivação e o enquadramento da tecnologia no panorama energético global. A estrutura da célula solar adoptada neste trabalho é também descrita. O capítulo 2 é reservado para uma descrição mais detalhada do composto Cu2ZnSnS4, nomeadamente as propriedades estruturais e opto-electrónicas. Estas últimas são usadas para explicar as composições não estequiométricas aplicadas no crescimento deste composto. São também descritas as várias técnicas de crescimento apresentadas na literatura. A última secção deste capítulo apresenta os resultados da caracterização publicados pelos vários grupos que estudam este composto. O método que foi implementado para crescer a camada absorvente, bem como os efeitos que a variação dos vários parâmetros têm neste processo são abordados no capítulo 3. Neste é também incluída uma descrição detalhada dos equipamentos usados na caraterização da camada absorvente e das células solares finais. As fases calcogêneas binária e ternárias são estudadas no capítulo 4. É apresentada uma descrição do método de crescimento, quer para as fases do tipo CuxSnSx+1, quer para as fases do tipo SnxSy e a sua caracterização básica, nomeadamente a sua composição e as propriedades estruturais, ópticas e eléctricas. No caso dos compostos binários são também apresentados os resultados de uma célula solar. No capítulo 5 são reportados os resultados da caracterização dos fi lmes de Cu2ZnSnS4. Técnicas como a dispersão Raman, a fotoluminescência, a efi ciência quântica externa e a espectroscopia de admitância são usadas para analisar as propriedades quer da camada absorvente quer da célula solar. No capítulo 6 é apresentada uma conclusão geral do trabalho desenvolvido e são referidas sugestões para melhorar e complementar os estudos feitos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a colossal magnetoresistive (CMR) Pr1−xCaxMnO3 (PCMO) man- ganite thin films and polycrystalline samples were studied with the main focus on the properties of the insulator to metal Mott phase transition. The polycrystalline PCMO samples were fabricated with the solid state reaction method. The polycrystalline sam- ples were further processed into the epitaxial thin films with the pulsed laser deposition method (PLD). The structural and magnetic properties of the samples were systemat- ically investigated and the thin films samples were further investigated with magneto- transport measurement where the thin films response to illumination was also studied. After the successful synthesis of polycrystalline PCMO samples with varying x = between 0.0 - 0.5, the magnetic characterization of the samples showed rich magnetic properties having the signatures of the magnetic phase coexistence of antiferromag- netic (AFM) and ferromagnetic (FM) ordering and cluster glass behaviour. With the increased doping concentration from x = 0.3 to 0.5, the AFM charge-order (CO) phase started to form up being strongest on the sample x = 0.5. This AFM CO phase could be melted with the high external magnetic field at temperatures below Neel’s tempera- ture TN inducing an irreversible first order metamagnetic AFM to FM phase transition. The strength of the AFM CO phase decreased with decreasing Ca concentration and increasing temperature. The polycrystalline PCMO samples with Ca concentrations of 0.3 - 0.5, showing metamagnetic behaviour, were selected for the fabrication of the thin film samples. The films were grown using two different in situ oxygen treatment temperatures at 500 ◦C and 700 ◦C in the PLD system. The films with x = 0.4 and 0.5 showed weaker AFM CO phase with greatly reduced melting fields when compared to polycrystalline samples. Also, the robustness of the AFM CO phase was further decreased in thin films with the lower oxygen treatment temperature of 500 ◦C. The magneto-transport measurements made on the thin films showed that the melting of AFM CO phase was connected to CMR effect where the increasing magnetic field induced an insulator to metal phase transition, which reduces the resistivity of the film around nine orders of magnitude. The use of illumination during the magneto-transport measurements showed a vari- ety of intriguing phenomena including magnetophotoresistance. The illumination had a huge effect to the insulator to metal transition (IMT) reducing the transition magnetic field significantly. Moreover, by magnetically biasing the thin films with the constant external magnetic field, the IMT could be induced by switching on the illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objects have consequences, seemingly. They move, atomic, formlessly – when static they are seen. That they vibrate constantly, that they are NOW present, is something we will have to trust the physicists on. They only seem here. Now is their moment of form, but later, who knows? Things SEEM when we recognise our own transience and temporary-ness. We call upon a bevy of senses that forever frustrate us with their limitation, despite our little understanding of what we actually have – is this here? So some forms seem to be telling us to trust our senses – that this world IS as it seems. Their form constantly refines and is refined and refined until in its essentialness it cannot be doubted – it absolutely IS. Is this our eyes? Can we only see it? But light is also a particle, if I remember correctly, so there is some weight to seeing. So to SEEM is also to FEEL,as this light imposes its visual weight upon our skins – we see with every pore of our body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Worldwide, the incidence of thick melanoma has not declined, and the nodular melanoma (NM) subtype accounts for nearly 40% of newly-diagnosed thick melanoma. To assess differences between patients with thin (≤2.00 mm) and thick (≥2.01 mm) nodular melanoma, we evaluated factors such as demographics, melanoma detection patterns, tumor visibility, and physician screening for NM alone and compared clinical presentation and anatomic location of NM with superficial spreading melanoma (SSM). Methods We utilized data from a large population-based study of Queensland (Australia) residents diagnosed with melanoma. Queensland residents aged 20 to 75 years with histologically confirmed first primary invasive cutaneous melanoma were eligible for the study, and all questionnaires were conducted by telephone (response rate 77.9%). Results During this four-year period, 369 patients with nodular melanoma were interviewed, of whom 56.7% were diagnosed with tumors ≤ 2.00 mm. Men, older individuals, and those who had not been screened by a physician in the past three years were more likely to have nodular tumors of greater thickness. Thickest nodular melanoma (4 mm+) was also most common in persons who had not been screened by a doctor within the past three years (OR 3.75; 95% CI 1.47-9.59). Forty-six percent of patients with thin nodular melanoma (≤ 2.00 mm) reported a change in color, compared with 64% of patients with thin SSM and 26% of patients with thick nodular melanoma (>2.00 mm). Conclusion Awareness of factors related to earlier detection of potentially fatal nodular melanomas, including the benefits of a physician examination, should be useful in enhancing public and professional education strategies. Particular awareness of clinical warning signs associated with thin nodular melanoma should allow for more prompt diagnosis and treatment of this subtype.