993 resultados para Thin Conductive Plate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By the semi-inverse method proposed by He, a Lagrangian is established for the large deflection problem of thin circular plate. Ritz method is used to obtain an approximate analytical solution of the problem. First order approximate solution is obtained, which is similar to those in open literature. By Mathematica a more accurate solution can be deduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are determined. This is accomplished by using a complex function method that allows a direct means of finding the distribution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient, coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack are predicted by application of the strain energy density criterion which can also be used for finding the load carrying capacity of the cracked plate. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Joule heat-induced hot-spot formation sets severe limits in the operation of continuous annular electrochromatography (CAEC), a new concept for preparative separation as an analog to analytical capillary electrochromatography (CEC). This may lead to eluent flow perturbance, even to boiling, which would massively weaken separation efficiency and may even hamper the stationary phase used for separation. For reasons of system integration and high-efficiency heat transfer, micro flow heat exchangers are considered with a separate coolant flow. A 3D numerical analysis of the heat transfer of water single-phase laminar flow in a square microchannel and different arrays of micro pin-fins was carried out using COMSOL Multiphysics. Several advanced materials with low electric conductivity and at the same time with high heat conductivity were put forward to be used in the CAEC system. As essential design point, it is proposed to constitute the micro heat exchanger from two different parts of the CAEC system, namely a microstructured pin-fins plate and a so-called conductive plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

定量分析电流密度在含裂纹载流薄板内的分布是当前利用电流热效应止裂技术中一个首先要解决的问题.由于裂纹的存在,电流密度在裂尖形成带奇异性分布的高度密集.现有的分析方法往往比较复杂或局限于特殊布置形式的裂纹.通过电流密度分布与弹性力学里反平面剪切问题的比拟,把分析含裂纹载流薄板内电流密度的分布等效于考虑相应的Ⅲ型裂纹问题,并比照Ⅲ型裂纹的应力强度因子来定义电流密度因子.而对于裂纹问题的处理可采用分布位错法这一断裂力学里便利有效的分析手段.由给出的算例可见,所提出的比拟解法可以方便精确地求解电流密度在裂尖附近的奇异分布,并有助于对这一奇异性在概念上的直观理解.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The governing differential equation of linear, elastic, thin, circular plate of uniform thickness, subjected to uniformly distributed load and resting on Winkler-Pasternak type foundation is solved using ``Chebyshev Polynomials''. Analysis is carried out using Lenczos' technique, both for simply supported and clamped plates. Numerical results thus obtained by perturbing the differential equation for plates without foundation are compared and are found to be in good agreement with the available results. The effect of foundation on central deflection of the plate is shown in the form of graphs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A non-conforming three-node triangular finite element with 18 degree of freedom, is used in conjugation with the Kirchhoff theory for the non-linear analysis of thin composite plate-shell structure. The formulation of the geometrically non-linear analysis is based on an updated Lagrangian formulation associated with the Newton-Raphson iterative technique, which incorporates an automatic arc-length control procedure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a technique for extending the force range of thin conductive polymer force sensors used for measuring contact force. These sensors are conventionally used for measuring force by changing electrical resistance when they are compressed. The new method involves measuring change in electrical resistance when the flexible sensor, which is sensitive to both compression and bending, is sandwiched between two layers of spring steel, and the structure is supported on a thin metal ring. When external force is applied, the stiffened sensor inside the spring steel is deformed within the annular center of the ring, causing the sensor to bend in proportion to the applied force. This method effectively increases the usable force range, while adding little in the way of thickness and weight. Average error for loads between 10 N and 100 N was 2.2 N (SD = 1.7) for a conventional conductive polymer sensor, and 0.9 N (SD = 0.4) using the new approach. Although this method permits measurement of greater loads with an error less than 1 N, it is limited since the modified sensor is insensitive to loads less than 5 N. These modified sensors are nevertheless useful for directly measuring normal force applied against handles and tools and other situations involving forceful manual work activities, such as grasp, push, pull, or press that could not otherwise be measured in actual work situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the process of engineering design of structural shapes, the flat plate analysis results can be generalized to predict behaviors of complete structural shapes. In this case, the purpose of this project is to analyze a thin flat plate under conductive heat transfer and to simulate the temperature distribution, thermal stresses, total displacements, and buckling deformations. The current approach in these cases has been using the Finite Element Method (FEM), whose basis is the construction of a conforming mesh. In contrast, this project uses the mesh-free Scan Solve Method. This method eliminates the meshing limitation using a non-conforming mesh. I implemented this modeling process developing numerical algorithms and software tools to model thermally induced buckling. In addition, convergence analysis was achieved, and the results were compared with FEM. In conclusion, the results demonstrate that the method gives similar solutions to FEM in quality, but it is computationally less time consuming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文针对四边固定载流矩形薄板,利用Mathieu方程解的稳定性,研究其在电磁场与机械荷载共同作用下的磁弹性稳定性问题。首先在载流薄板的磁弹性非线性运动方程、物理方程、几何方程、洛仑兹力表达式及电动力学方程的基础上,导出了载流薄板在电磁场与机械荷载共同作用下的磁弹性动力稳定方程,然后应用Galerkin方法将稳定方程整理为Mathieu方程的标准形式,并将薄板的动力稳定性问题归结为对Mathieu方程的求解。利用Mathieu方程的稳定解区域与非稳定解区域的分界,即方程系数λ和η的本征值关系,得出了磁弹性问题失稳临界状态的判别方程。通过具体算例,给出了四边固定载流矩形薄板的磁弹性动力失稳临界状态与相关参量之间的关系曲线,并对计算结果及其变化规律进行了分析讨论。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When a thin rectangular plate is restrained on the two long edges and free on the remaining edges, the equivalent stiffness of the restraining joints can be identified by the order of the natural frequencies obtained using the free response of the plate at a single location. This work presents a method to identify the equivalent stiffness of the restraining joints, being represented as simply supporting the plate but elastically restraining it in rotation. An integral transform is used to map the autospectrum of the free response from the frequency domain to the stiffness domain in order to identify the equivalent torsional stiffness of the restrained edges of the plate and also the order of natural frequencies. The kernel of the integral transform is built interpolating data from a finite element model of the plate. The method introduced in this paper can also be applied to plates or shells with different shapes and boundary conditions. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A periodic structure of finite extent is embedded within an otherwise uniform two-dimensional system consisting of finite-depth fluid covered by a thin elastic plate. An incident harmonic flexural-gravity wave is scattered by the structure. By using an approximation to the corresponding linearised boundary value problem that is based on a slowly varying structure in conjunction with a transfer matrix formulation, a method is developed that generates the whole solution from that for just one cycle of the structure, providing both computational savings and insight into the scattering process. Numerical results show that variations in the plate produce strong resonances about the ‘Bragg frequencies’ for relatively few periods. We find that certain geometrical variations in the plate generate these resonances above the Bragg value, whereas other geometries produce the resonance below the Bragg value. The familiar resonances due to periodic bed undulations tend to be damped by the plate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho apresenta os resultados para a análise da Eficiência de Blindagem utilizando estruturas indoor construídas com lâminas “finas” condutoras elétricas. As simulações foram realizadas utilizando o método das diferenças finitas no domínio do tempo, FDTD, no qual foi implementada uma formulação de sub-célula para o modelamento de estruturas finas. A simulação foi validada comparando-se os resultados obtidos com os disponíveis na literatura. Assim, várias geometrias foram testadas, modificando-se aberturas e o espaçamento entre paredes duplas blindadas. Por fim, um laboratório de alta-tensão foi construído virtualmente, com dimensões reais, e foram analisados os valores da Eficiência de Blindagem considerando a estrutura completamente fechada e com aberturas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports an experimental method to estimate the convective heat transfer of cutting fluids in a laminar flow regime applied on a thin steel plate. The heat source provided by the metal cutting was simulated by electrical heating of the plate. Three different cooling conditions were evaluated: a dry cooling system, a flooded cooling system and a minimum quantity of lubrication cooling system, as well as two different cutting fluids for the last two systems. The results showed considerable enhancement of convective heat transfer using the flooded system. For the dry and minimum quantity of lubrication systems, the heat conduction inside the body was much faster than the heat convection away from its surface. In addition, using the Biot number, the possible models were analyzed for conduction heat problems for each experimental condition tested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of my dissertation is to provide new knowledge and applications of microfluidics in a variety of problems, from materials science, devices, and biomedicine, where the control on the fluid dynamics and the local concentration of the solutions containing the relevant molecules (either materials, precursors, or biomolecules) is crucial. The control of interfacial phenomena occurring in solutions at dierent length scales is compelling in nanotechnology for devising new sensors, molecular electronics devices, memories. Microfluidic devices were fabricated and integrated with organic electronics devices. The transduction involves the species in the solution which infills the transistor channel and confined by the microfluidic device. This device measures what happens on the surface, at few nanometers from the semiconductor channel. Soft-lithography was adopted to fabricate platinum electrodes, starting from platinum carbonyl precursor. I proposed a simple method to assemble these nanostructures in periodic arrays of microstripes, and form conductive electrodes with characteristic dimension of 600 nm. The conductivity of these sub-microwires is compared with the values reported in literature and bulk platinum. The process is suitable for fabricating thin conductive patterns for electronic devices or electrochemical cells, where the periodicity of the conductive pattern is comparable with the diusion length of the molecules in solution. The ordering induced among artificial nanostructures is of particular interest in science. I show that large building blocks, like carbon nanotubes or core-shell nanoparticles, can be ordered and self-organised on a surface in patterns due to capillary forces. The eective probability of inducing order with microfluidic flow is modeled with finite element calculation on the real geometry of the microcapillaries, in soft-lithographic process. The oligomerization of A40 peptide in microconfined environment represents a new investigation of the extensively studied peptide aggregation. The added value of the approach I devised is the precise control on the local concentration of peptides together with the possibility to mimick cellular crowding. Four populations of oligomers where distinguished, with diameters ranging from 15 to 200 nm. These aggregates could not be addresses separately in fluorescence. The statistical analysis on the atomic force microscopy images together with a model of growth reveal new insights on the kinetics of amyloidogenesis as well as allows me to identify the minimum stable nucleus size. This is an important result owing to its implications in the understanding and early diagnosis and therapy of the Alzheimer’s disease