941 resultados para Thermostable enzyme
Resumo:
Thermophilic fungus Thermoascus aurantiacus (CBMAI 756) on solid-state fermentation using corncob as a nutrient source produces an enzyme pool with the potential to be used in bread making. In this paper, the use of this enzyme cocktail as a wheat bread improver was reported. Both products released by flour arabinoxylan degradation and bread quality were investigated. The main product released through enzyme activity after prolonged incubation was xylose indicating the presence of xylanase; however, a small amount of xylobiose and arabinose also confirmed the presence of xylosidase and α-L- arabinofuranosidase, respectively. Enzyme mixture in vitro mainly attacked water-unextractable arabinoxylan contributing to beneficial effect in bread making. The use of an optimal enzyme concentration (35 U xylanase/100 g of flour) increased specific volume (22%), reduced crumb firmness (25%), and reduced amylopectin retrogradation (17%) during bread storage. In conclusion, the enzyme cocktail produced by T. aurantiacus CBMAI 756 can improve wheat bread quality. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purified beta-glucosidase of Aureobasidium pullulans ER-16 is one of more thermostable enzyme reported to date. Considering the unfeasibility of using purified enzyme for industrial application, it was interesting to analyze this property for the crude enzyme. Thermophilic fungus Thermoascus aurantiacus CBMAI-756 and mesophilic A. pullulans ER-16 were cultivated in different hemicellulosic materials on solid-state cultivation for beta-glucosidase production. Wheat bran was most appropriate for beta-glucosidase production by both microorganisms. T. aurantiacus exhibited maximum enzyme production (7.0 U/ml or 70 U/g) at 48-72 h and A. pullulans a maximum (1.3 U/ml or 13 U/g) at 120 h. Maximum activities were at 75 degrees C with optimum pH at 4.5 and 4.0, for T aurantiacus and A. pullulans, respectively. A. pullulans`s beta-glucosidase was more pH stable (4.5-10.0 against 4.5-8.0) and more thermostable (90% after 1 h at 75 degrees C against 85% after 1 h at 70 degrees C) than the enzyme from the thermophilic T. aurantiacus. The t((1/2)) at 80 degrees C were 50 and 12.5 min for A. pullulans and T. aurantiascus, respectively. These data confirm the high thermostability of crude beta-glucosidase from A. pullulans. Both beta-glucosidases were strongly inhibited by glucose, but ethanol significantly increased the activity of the enzyme from T. aurantiacus. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
REVIEW: Living organisms encountered in hostile environments that are characterized by extreme temperatures rely on novel molecular mechanisms to enhance the thermal stability of their proteins, nucleic acids, lipids and cell membranes. Proteins isolated from thermophilic organisms usually exhibit higher intrinsic thermal stabilities than their counterparts isolated from mesophilic organisms. Although the molecular basis of protein thermostability is only partially understood, structural studies have suggested that the factors that may contribute to enhance protein thermostability mainly include hydrophobic packing, enhanced secondary structure propensity, helix dipole stabilization, absence of residues sensitive to oxidation or deamination, and increased electrostatic interactions. Thermostable enzymes such as amylases, xylanases and pectinases isolated from thermophilic organisms are potentially of interest in the optimization of industrial processes due to their enhanced stability. In the present review, an attempt is made to delineate the structural factors that increase enzyme thermostability and to document the research results in the production of these enzymes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The 1.7 angstrom resolution crystal structure of recombinant family G/11 beta-1,4-xylanase (rXynA) from Bacillus subtilis 1A1 shows a jellyroll fold in which two curved P-sheets form the active-site and substrate-binding cleft. The onset of thermal denaturation of rXynA occurs at 328 K, in excellent agreement with the optimum catalytic temperature. Molecular dynamics simulations at temperatures of 298-328 K demonstrate that below the optimum temperature the thumb loop and palm domain adopt a closed conformation. However, at 328 K these two domains separate facilitating substrate access to the active-site pocket, thereby accounting for the optimum catalytic temperature of the rXynA. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pectinmethylesterase (PME) was extracted from guava fruit (Psidium guajava L.), cultivar Paluma, by 70% ammonium sulphate saturation and partially purified by gel filtration on Sephadex G100. Gel filtration showed PME isoenzymes with different values of molecular mass. Two samples were examined: concPME (70% saturation by ammonium sulphate) and Iso4 PME (one of the isoforms from gel filtration with the greatest specific activity). Optimum pH of the enzyme (for both samples) was 8.5 and optimum temperature ranged from 75 and 85 degrees C. The optimum sodium chloride concentration was 0.15 M. The K-M and V-max ranged from 0.32 to 0.23 mg m1(-1) and 244 to 53.2 mu mol/min, respectively, for concPME and Iso4PME. The activation energies (E-a) were 64.5 and 103 kJ/mol, respectively, for concPME and Iso4PME. Guava PME, cv Paluma, is a very thermostable enzyme, showing great heat stability at all temperatures studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme, remaining 100% active when incubated at 75°C for 1 h. © 2007 Humana Press Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 degrees C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 degrees C, with a t(50) of 45 min at 60 degrees C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl alpha-D-maltoside, methyl-alpha-D-glucopyranoside, pullulan, alpha- and beta-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in alpha-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-alpha-D-glucan glucohydrolase).
Resumo:
An alpha-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The alpha-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pl value of 4.5. Temperature and pH optima were 60 degrees C and 4.0, respectively. The enzyme was stable for 1 h at 55 degrees C, showing a t(50) of 53 min at 60 degrees C. Starch protected the enzyme against thermal inactivation. The a-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The K(m) of alpha-amylase on Reagen (R) and Sigma (R) starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to alpha-amylases from Bacillus sp. These results confirmed that the studied enzyme was an a-amylase ((1 -> 4)-alpha-glucan glucanohydrolase). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A glucoamylase from Aspergillus niveus was produced by submerged fermentation in Khanna medium, initial pH 6.5 for 72 h, at 40A degrees C. The enzyme was purified by DEAE-Fractogel and Concanavalin A-Sepharose chromatography. The enzyme showed 11% carbohydrate content, an isoelectric point of 3.8 and a molecular mass of 77 and 76 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Bio-Sil-Sec-400 gel filtration, respectively. The pH optimum was 5.0-5.5, and the enzyme remained stable for at least 2 h in the pH range of 4.0-9.5. The temperature optimum was 65A degrees C and retained 100% activity after 240 min at 60A degrees C. The glucoamylase remained completely active in the presence of 10% methanol and acetone. After 120 min hydrolysis of starch, glucose was the unique product formed, confirming that the enzyme was a glucoamylase (1,4-alpha-d-glucan glucohydrolase). The K (m) was calculated as 0.32 mg ml(-1). Circular dichroism spectroscopy estimated a secondary structure content of 33% alpha-helix, 17% beta-sheet and 50% random structure, which is similar to that observed in the crystal structures of glucoamylases from other Aspergillus species. The tryptic peptide sequence analysis showed similarity with glucoamylases from A. niger, A. kawachi, A. ficcum, A. terreus, A. awamori and A. shirousami. We conclude that the reported properties, such as solvent, pH and temperature stabilities, make A. niveus glucoamylase a potentially attractive enzyme for biotechnological applications.