880 resultados para Thermodynamic functions
Resumo:
The specific heat, cp, of two amorphous silicon (a-Si) samples has been measured by differential scanning calorimetry in the 100–900K temperature range. When the hydrogen content is reduced by thermal annealing, cp approaches the value of crystalline Si (c-Si). Within experimental accuracy, we conclude that cp of relaxed pure a-Si coincides with that of c-Si. This result is used to determine the enthalpy, entropy, and Gibbs free energy of defect-free relaxed a-Si. Finally, the contribution of structural defects on these quantities is calculated and the melting point of several states of a-Si is predicted
Resumo:
The basic thermodynamic functions, the entropy, free energy, and enthalpy, for element 105 (hahnium) in electronic configurations d^3 s^2, d^3 sp, and d^4s^1 and for its +5 ionized state (5f^14) have been calculated as a function of temperature. The data are based on the results of the calculations of the corresponding electronic states of element 105 using the multiconfiguration Dirac-Fock method.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for sodium naproxen in ethanol + water cosolvent mixtures, were evaluated from solubility data determined at temperatures from (278.15 to 308.15) K. The drug solubility was greatest in neat water and lowest in neat ethanol at all the temperatures studied. By means of non-linear enthalpy-entropy compensation analysis, it follows that the dissolution process of this drug in ethanol-rich mixtures is entropy-driven, whereas, in water-rich mixtures the process is enthalpy-driven.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for triclocarban in ethanol + propylene glycol mixtures were evaluated from solubility data determined at temperatures from (293.15 to 313.15) K. The drug solubility was greatest in the mixture with 0.60 in mass fraction of ethanol and lowest in neat propylene glycol at almost all the temperatures studied. Non-linear enthalpy-entropy compensation is found indicating apparently different mechanisms of the solution process according to the mixtures composition.
Resumo:
The thermodynamic functions of a Fermi gas with spin population imbalance are studied in the temperature-asymmetry plane in the BCS limit. The low-temperature domain is characterized by an anomalous enhancement of the entropy and the specific heat above their values in the unpaired state, decrease of the gap and eventual unpairing phase transition as the temperature is lowered. The unpairing phase transition induces a second jump in the specific heat, which can be measured in calorimetric experiments. While the superfluid is unstable against a supercurrent carrying state, it may sustain a metastable state if cooled adiabatically down from the stable high-temperature domain. In the latter domain the temperature dependence of the gap and related functions is analogous to the predictions of the BCS theory.
Resumo:
Apparent thermodynamic functions, Gibbs energy, enthalpy and entropy of solution and mixing, for methocarbamol in ethanol + water mixtures, were evaluated from solubility data determined at temperatures from 293.15 K to 313.15 K and from calorimetric values of drug fusion. The drug solubility was greatest in the mixtures with 0.70 or 0.80 mass fraction of ethanol and lowest in neat water across all temperatures studied. Non-linear enthalpy-entropy compensation was found for the dissolution processes. Accordingly, solution enthalpy drives the respective processes in almost all the solvent systems analyzed.
Resumo:
A silica surface chemically modified with [3-(2,2'-dipyridylamine) propyl] groups was prepared, characterized, and evaluated for its metal ion preconcentration in fuel ethanol. To our knowledge, we are the first authors who have reported the present modification on silica gel surface. The material was characterized using infrared spectra, scanning electronic microscopy, and 13C and 29Si solid-state NMR spectra. Batch and column experiments were conducted to investigate for metal ion removal from fuel ethanol. The results showed that the Langmuir model describes the sorption equilibrium data of the metal ions in a satisfactory way. From the Langmuir isotherms, the following maximum adsorption capacities (in mmolg -1) were determined: 1.81 for Fe(III), 1.75 for Cr(III), 1.30 for Cu(II), 1.25 for Co(II), 1.15 for Pb(II), 0.95 for Ni(II), and 0.87 for Zn(II). Thermodynamic functions, the change of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) showed that the adsorption of metal ions onto Si-Pr-DPA was feasible, spontaneous, and endothermic. The sorption-desorption of the metal ions made possible the development of a preconcentration and quantification method of metal ions in fuel ethanol. © 2012 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order vibrational perturbation theory (VPT2) applied on second-order Møller–Plesset perturbation theory (MP2) potential energy surfaces. Using a training set of 16 water clusters (H2O)n=2–6,8,9 with a total of 723 vibrational modes, we determined scaling factors that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more anharmonic than intramolecular bending and stretching modes. Due to the varying levels of anharmonicity of the intermolecular and intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy. Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib) and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.
Resumo:
The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order vibrational perturbation theory (VPT2) applied on second-order Møller–Plesset perturbation theory (MP2) potential energy surfaces. Using a training set of 16 water clusters (H2O)n=2–6,8,9 with a total of 723 vibrational modes, we determined scaling factors that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more anharmonic than intramolecular bending and stretching modes. Due to the varying levels of anharmonicity of the intermolecular and intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy. Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib) and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.
Resumo:
Even though the Standard Model with a Higgs mass mH = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a "soft point" at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial "structure" visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.
Resumo:
The nutritional requirements for the vegetative growth of B. stearothermophilus strains NCIB 8919, NCTC lO,OO3 (wild) were found to be DL-methionine, biotin, nicotinic acid, thiamin, glucose and mineral salts. Strains NCIB 8920 required in addition L-tryptophan. B. stearothermophilus NCTC lO,OO3 (mutant) grew in a medium containing only glucose and mineral salts. Separate chemically defined media for the growth of Bacillus stearothermophilus strains NCIB 8919, 8920, NCTC lO,OO3 (wild) and NCTC lO,OO3 (mutant) were developed. Optimally aerated culture of B. stearothermonhilus NCTC lO,OO3(mutant) required 1.0 x 10-4 M. Mn2+ and 2.4 x 10-3 M. glutamic acid for optimal sporulation. Specific nutrient depletion of growth affected percentage sporulation. Spore suspensions of B. stearothermophilus NCTC 10,003 (mutant) were prepared from media in which sulphate (SO4-), nitrogen (N-),phosphate (Po4-), carbon (C-), magnesium-carbon simultaneously (Ng-C-) depleted growth. The heat resistance, dormancy and chemistry of these spores varied considerably. B. stearothermophilus NCTC 10,003 10,00310,00(mutant) spores prepared from carbon depleted cultures containing high and low concentrations of calcium, iron or manganese showed variations in heat resistance,dormancy and chemical composition. Progressive increase in the concentration of medium calciumfrom 1.0 X 10-5 M to 1.4 X 10-4 M. progressively increased theheat resistance of B. stearothermophilus NCTC 10,003 (mutant) spores prepared from nitrogen depleted cultures (N-). The thermodynamic functions for germination rate, magnesium and manganese release of N- and SO4- spores were within the range expected of enzymic reactions. The thermodynamic functions for the breaking of dormancy in SO4- spores and that for the release of D.P.A. were identical. Sublethal heating of SO4- spores (96.5°C and below) induced dormancy in these spores, whereas heating above 96.5°C gave rise to heat activation. Pooled results of the chemical analyses of all spore types studied showed that the concentration of D.P.A. and calcium were positively related to heat resistance whereas magnesium concentration and Mg/Ca molar ratio were inversely proportional to heat resistance.
Resumo:
Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.
We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.
References
[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.
[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.
[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.
Resumo:
In this work, ionic liquids are evaluated for the first time as solvents for extraction and entrainers in separation processes involving terpenes and terpenoids. For that purpose, activity coefficients at infinite dilution, γ13 ∞, of terpenes and terpenoids, in the ionic liquids [C4mim]Cl, [C4mim][CH3SO3], [C4mim][(CH3)2PO4] and [C4mim][CF3SO3] were determined by gas−liquid chromatography at six temperatures in the range 398.15 to 448.15 K. On the basis of the experimental values, a correlation of γ13 ∞ with an increase of the solubility parameters is proposed. The infinite dilution thermodynamic functions were calculated showing the entropic effect is dominant over the enthalpic. Gas−liquid partition coefficients give indications about the recovery and purification of terpenes and terpenoids from ionic liquid solutions. Presenting a strong innovative character, COSMO-RS was evaluated for the description of the selectivities and capacities, showing to be a useful tool for the screening of ionic liquids in order to find suitable candidates for terpenes and terpenoids extraction, and separation. COSMO-RS predictions show that in order to achieve the maximum separation efficiency, polar anions should be used such as bis(2,4,4-trimethylpentyl)phosphinate or acetate, whereas high capacities require nonpolar cations such as phosphonium.
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.