1000 resultados para Thermal dependences


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss the thermal dependence of the zero-bias electrical conductance for a quantum dot embedded in a quantum wire, or side-coupled to it. In the Kondo regime, the temperature-dependent conductances map linearly onto the conductance for the symmetric Anderson Hamiltonian. The mapping fits accurately numerical renormalization-group results for the conductance in each geometry. In the side-coupled geometry, the conductance is markedly affected by a gate potential applied to the wire; in the embedded geometry, it is not. © 2010 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O–H⋯O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20–300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner–Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner–Fisher approximation gave the following result for compound 2: g=2.18, J=–0.4 cm−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal entanglement in a two-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement is present and evolvements symmetrically between both ferromagnetic and antiferromagnetic exchange couplings with the temperature. Moreover the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement exists and is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability and thermal decomposition pathways for synthetic iowaite have been determined using thermogravimetry in conjunction with evolved gas mass spectrometry. Chemical analysis showed the formula of the synthesised iowaite to be Mg6.27Fe1.73(Cl)1.07(OH)16(CO3)0.336.1H2O and X-ray diffraction confirms the layered structure. Dehydration of the iowaite occurred at 35 and 79°C. Dehydroxylation occurred at 254 and 291°C. Both steps were associated with the loss of CO2. Hydrogen chloride gas was evolved in two steps at 368 and 434°C. The products of the thermal decomposition were MgO and a spinel MgFe2O4. Experimentally it was found to be difficult to eliminate CO2 from inclusion in the interlayer during the synthesis of the iowaite compound and in this way the synthesised iowaite resembled the natural mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.