1000 resultados para Theory contraction
Resumo:
The one which is considered the standard model of theory change was presented in [AGM85] and is known as the AGM model. In particular, that paper introduced the class of partial meet contractions. In subsequent works several alternative constructive models for that same class of functions were presented, e.g.: safe/kernel contractions ([AM85, Han94]), system of spheres-based contractions ([Gro88]) and epistemic entrenchment-based contractions ([G ar88, GM88]). Besides, several generalizations of such model were investigated. In that regard we emphasise the presentation of models which accounted for contractions by sets of sentences rather than only by a single sentence, i.e. multiple contractions. However, until now, only two of the above mentioned models have been generalized in the sense of addressing the case of contractions by sets of sentences: The partial meet multiple contractions were presented in [Han89, FH94], while the kernel multiple contractions were introduced in [FSS03]. In this thesis we propose two new constructive models of multiple contraction functions, namely the system of spheres-based and the epistemic entrenchment-based multiple contractions which generalize the models of system of spheres-based and of epistemic entrenchment-based contractions, respectively, to the case of contractions (of theories) by sets of sentences. Furthermore, analogously to what is the case in what concerns the corresponding classes of contraction functions by one single sentence, those two classes are identical and constitute a subclass of the class of partial meet multiple contractions. Additionally, and as the rst step of the procedure that is here followed to obtain an adequate de nition for the system of spheres-based multiple contractions, we present a possible worlds semantics for the partial meet multiple contractions analogous to the one proposed in [Gro88] for the partial meet contractions (by one single sentence). Finally, we present yet an axiomatic characterization for the new class(es) of multiple contraction functions that are here introduced.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the coupled i.e., axial, flexural, shear and contraction, wave propagation in single-walled carbon nanotubes (SWCNTs). The axial and transverse motion of SWCNT is modeled based on first order shear deformation theory (FSDT) and thickness contraction. The governing equations are derived based on nonlocal constitutive relations and the wave dispersion analysis is also carried out. The studies shows that the nonlocal scale parameter introduces certain band gap region in all wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. Explicit expressions are derived for cut-off and escape frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and contraction mode are independent of the nonlocal scale parameter. The results provided in this article are new and are useful guidance for the study and design of the next generation of nanodevices that make use of the coupled wave propagation properties of single-walled carbon nanotubes.
Resumo:
A new finite volume method for solving the incompressible Navier--Stokes equations is presented. The main features of this method are the location of the velocity components and pressure on different staggered grids and a semi-Lagrangian method for the treatment of convection. An interpolation procedure based on area-weighting is used for the convection part of the computation. The method is applied to flow through a constricted channel, and results are obtained for Reynolds numbers, based on half the flow rate, up to 1000. The behavior of the vortex in the salient corner is investigated qualitatively and quantitatively, and excellent agreement is found with the numerical results of Dennis and Smith [Proc. Roy. Soc. London A, 372 (1980), pp. 393-414] and the asymptotic theory of Smith [J. Fluid Mech., 90 (1979), pp. 725-754].
Resumo:
Density functional theory has been used to investigate the surface relaxation of Cu2O(100) and the adsorption of NO. The calculations indicate the formation of surface copper dimers on relaxation coupled with a large contraction of the spacing between the first and second layers. Local density of states for atoms in the top three layers shows that the third layer copper atoms have the greatest change in bonding character. Adsorption energies have been calculated for the N-down and O-down adsorption of NO on the Cu2O(100) surface. These indicate that N-down adsorption is favoured and that in this case NO-lattice oxygen interactions dominate the adsorbate structure. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Reasoning and change over inconsistent knowledge bases (KBs) is of utmost relevance in areas like medicine and law. Argumentation may bring the possibility to cope with both problems. Firstly, by constructing an argumentation framework (AF) from the inconsistent KB, we can decide whether to accept or reject a certain claim through the interplay among arguments and counterarguments. Secondly, by handling dynamics of arguments of the AF, we might deal with the dynamics of knowledge of the underlying inconsistent KB. Dynamics of arguments has recently attracted attention and although some approaches have been proposed, a full axiomatization within the theory of belief revision was still missing. A revision arises when we want the argumentation semantics to accept an argument. Argument Theory Change (ATC) encloses the revision operators that modify the AF by analyzing dialectical trees-arguments as nodes and attacks as edges-as the adopted argumentation semantics. In this article, we present a simple approach to ATC based on propositional KBs. This allows to manage change of inconsistent KBs by relying upon classical belief revision, although contrary to it, consistency restoration of the KB is avoided. Subsequently, a set of rationality postulates adapted to argumentation is given, and finally, the proposed model of change is related to the postulates through the corresponding representation theorem. Though we focus on propositional logic, the results can be easily extended to more expressive formalisms such as first-order logic and description logics, to handle evolution of ontologies.
Resumo:
We introduce labelled sequent calculi for indexed modal logics. We prove that the structural rules of weakening and contraction are height-preserving admissible, that all rules are invertible, and that cut is admissible. Then we prove that each calculus introduced is sound and complete with respect to the appropriate class of transition frames.
Resumo:
In der vorliegenden Arbeit wird die Variation abgeschlossener Unterräume eines Hilbertraumes untersucht, die mit isolierten Komponenten der Spektren von selbstadjungierten Operatoren unter beschränkten additiven Störungen assoziiert sind. Von besonderem Interesse ist hierbei die am wenigsten restriktive Bedingung an die Norm der Störung, die sicherstellt, dass die Differenz der zugehörigen orthogonalen Projektionen eine strikte Normkontraktion darstellt. Es wird ein Überblick über die bisher erzielten Resultate gegeben. Basierend auf einem Iterationsansatz wird eine allgemeine Schranke an die Variation der Unterräume für Störungen erzielt, die glatt von einem reellen Parameter abhängen. Durch Einführung eines Kopplungsparameters wird das Ergebnis auf den Fall additiver Störungen angewendet. Auf diese Weise werden zuvor bekannte Ergebnisse verbessert. Im Falle von additiven Störungen werden die Schranken an die Variation der Unterräume durch ein Optimierungsverfahren für die Stützstellen im Iterationsansatz weiter verschärft. Die zugehörigen Ergebnisse sind die besten, die bis zum jetzigen Zeitpunkt erzielt wurden.
Resumo:
Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.
Resumo:
Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.
Resumo:
Women with a disability continue to experience social oppression and domestic violence as a consequence of gender and disability dimensions. Current explanations of domestic violence and disability inadequately explain several features that lead women who have a disability to experience violent situations. This article incorporates both disability and material feminist theory as an alternative explanation to the dominant approaches (psychological and sociological traditions) of conceptualising domestic violence. This paper is informed by a study which was concerned with examining the nature and perceptions of violence against women with a physical impairment. The emerging analytical framework integrating material feminist interpretations and disability theory provided a basis for exploring gender and disability dimensions. Insight was also provided by the women who identified as having a disability in the study and who explained domestic violence in terms of a gendered and disabling experience. The article argues that material feminist interpretations and disability theory, with their emphasis on gender relations, disablism and poverty, should be used as an alternative tool for exploring the nature and consequences of violence against women with a disability.