935 resultados para Terrestrial invertebrate
Resumo:
To date, research on the ecology and conservation of wetland invertebrates has concentrated overwhelmingly on fully aquatic organisms. Many of these spend part of their life-cycle in adjacent terrestrial habitats, either as pupae (water beetles) or as adults (mayflies, dragonflies, stoneflies, caddisflies and Diptera or true-flies). However, wetland specialist species also occur among several families of terrestrial insects (Williams & Feltmate 1992) that complete their whole life-cycle in the riparian zone or on emergent vegetation. There are 441 terrestrial invertebrate species which characteristically occur in riparian habitats along British rivers. Most of these species belong to two families of predatory beetles: the ground beetles (Carabidae) and the rove beetles (Staphylinidae). This paper describes the diversity of ground and rove beetles around ponds, summarises life-histories, hibernation strategies, and morphological and behavioural adaptions.
Resumo:
Agroindustrial by-products and residues from treatment of sewage sludge have been recently recycled as soil amendments. This study was aimed at assessing toxic potential of biosolid, obtained from a sewage treatment plant (STP), vinasse, a by-product of the sugar cane industry, and a combination of both residues using Allium cepa assay. Bioprocessing of these samples by a terrestrial invertebrate (diplopod Rhinocricus padbergi) was also examined. Bioassay assembly followed standards of the Brazilian legislation for disposal of these residues. After adding residues, 20 diplopods were placed in each terrarium, where they remained for 30 days. Chemical analysis and the A. cepa assay were conducted before and after bioprocessing by diplopods. At the end of the bioassay, there was a decrease in arsenic and mercury. For the remaining metals, accumulation and/or bioavailability varied in all samples but suggested bioprocessing by animals. The A. cepa test revealed genotoxic effects characterized by different chromosome aberrations. Micronuclei and chromosome breaks on meristematic cells and F1 cells with micronuclei were examined to assess mutagenicity of samples. After 30 days, the genotoxic effects were significantly reduced in the soil + biosolid and soil + biosolid + vinasse groups as well as the mutagenic effects in the soil + biosolid + vinasse group. Similar to vermicomposting, bioprocessing of residues by diplopods can be a feasible alternative and used prior to application in crops to improve degraded soils and/or city dumps. Based on our findings, further studies are needed to adequately dispose of these residues in the environment. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Dry river beds are common worldwide and are rapidly increasing in extent due to the effects of water management and prolonged drought periods due to climate change. While attention has been given to the responses of aquatic invertebrates to drying rivers, few studies exist on the terrestrial invertebrates colonizing dry river beds. Dry river beds are physically harsh and they often differ substantially in substrate, topography, microclimate and inundation frequency from adjacent riparian zones. Given these differences, we predicted that dry river beds provide a unique habitat for terrestrial invertebrates, and that their assemblage composition differs from that in adjacent riparian zones. Dry river beds and riparian zones in Australia and Italy were sampled for terrestrial invertebrates with pitfall traps. Sites differed in substrate type, climate and flow regime. Dry river beds contained diverse invertebrate assemblages and their composition was consistently different from adjacent riparian zones, irrespective of substrate, climate or hydrology. Although some taxa were shared between dry river beds and riparian zones, 66 of 320 taxa occurred only in dry river beds. Differences were due to species turnover, rather than shifts in abundance, indicating that dry river bed assemblages are not simply subsets of riparian assemblages. Some spatial patterns in invertebrate assemblages were associated with environmental variables (irrespective of habitat type), but these associations were statistically weak. We suggest that dry river beds are unique habitats in their own right. We discuss potential human stressors and management issues regarding dry river beds and provide recommendations for future research.
Resumo:
During a computer-aided search of the Crustacea collection in the Department of Invertebrate Zoology at the Smithsonian Institution (USNM), a record was found for the existence of Hemilepistus klugii (Brandt, 1833) in Pakistan.
Resumo:
Carbon (C) and nitrogen (N) stable isotope analysis (SIA) has been used to identify the terrestrial subsidy of freshwater food webs. However, SIA fails to differentiate between the contributions of old and recently fixed terrestrial C and consequently cannot fully determine the source, age, and biochemical quality of terrestrial carbon. Natural abundance radiocarbon (∆14C) was used to examine the age and origin of carbon in Lower Lough Erne, Northern Ireland. 14C and stable isotope values were obtained from invertebrate, algae, and fish samples, and the results indicate that terrestrial organic C is evident at all trophic levels. High winter δ15N values in calanoid zooplankton (δ15N = 24‰) relative to phytoplankton and particulate organic matter (δ15N = 6‰ and 12‰, respectively) may reflect several microbial trophic levels between terrestrial C and calanoid invertebrates. Winter and summer calanoid ∆14C values show a seasonal switch between autochthonous and terrestrial carbon sources. Fish ∆14C values indicate terrestrial support at the highest trophic levels in littoral and pelagic food webs. 14C therefore is useful in attributing the source of carbon in freshwater in addition to tracing the pathway of terrestrial carbon through the food web.
Resumo:
Tese de doutoramento, Ecologia, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2003
Resumo:
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.
Resumo:
tabula tabular tachyauxesis tachyblastic tachygen tachygenesis tachytelic tactic tactile tactoreceptors taenia taeniate taenidium taenioglossate tagma tagmata tagmosis tail tailfan Takakura's talon talus tandem tangent tangoreceptor tanylobous tapetal tapetum tapinoma-odor Tardigrada tardigrades tarsal tarsation tarsite tarsomere tarsungulus tarsus taste tautonomy tautonym taxa taxes taxis taxis taxodont taxometrics taxon taxonomic taxonomist taxonomy tectiform tectostracum tectum teeth teges tegillum tegmen tegmentum tegula tegular tegulum tegumen tegument tegumentary tela telaform telamon telegonic teleiochrysalis telenchium teleoconch teleodont teleology teleotrocha telepod telescope telescopic teletrophic telioderma teliophan telmophage telocentric telodendria telofemur telogonic telolecithal telomitic telophase telophragma telopod telopodite telorhabdions telosonic telostome telosynapsis telosyndesis telotarsus telotaxis telotroch telson template temporal tenacipeds tenaculum tenent teneral tensor tentacle tentacular tentaculocyst tentaculozooid tentilla tentorial tentorium tenuous teratocyte teratogen teratogenesis teratogyne teratology terebella terebra terebrant terebrate teres terete terga tergal tergite tergolateral tergopleural tergopore tergum tergum termen terminal terminalia termitarium termitophile terranes terrestrial terricolous territory tertiary tertibrach tertibrachial tessellate test testaceology testaceous test-cross testes testis testisac testudinate tetanus tetany tetractinal tetractine tetrad tetradelphic tetramerous tetramorphic tetraploid tetrapod tetrapterous tetrasomic tetrathyridial tetrathyridium tetraxon tetraxonid thalassophilous thallus thamnophilous thanatocoenosis thanatosis theca thecae thecal thecate thelycum thelygenesis thelygenous thelyotokous thelyotoky theory thermocline thermophile thermophobe thermoreceptor thermotaxis thickness thigmotactic thigmotaxis thigmotropism third-form thoraces thoracic thoracomere thoracopod(ite) thorax thoraxes thread thylacium thylacogen thyridial thyridium thyroid thysanuriform tibia tibial tibiotarsal tibiotarsus Tiedemann's tiled timbal tinctorial tine tissue tissue titilla titillae titillator tocopherol tocospermal tocospermia tocostome tokostome tomentose tomentum Tomosvary tone tonic tonofibrillae tonus topochemical topogamodeme topomorph topomorphic toponym topotype tori torma tormogen tornote tornus torose torpid torqueate torsion tortuose torulose torus totipotent totomount toxa toxicognath toxicology toxin toxinosis toxoglossate toxoid trabecula trabeculate trabeculated trachea tracheae tracheal tracheate tracheoblast tracheolar tracheoles trachychromatic tract Tragardh's tragus transad transcoxa transcurrent transect transection transformation transient transitional translocation translucent transmission transposed transscutal transstadial transtilla transverse trapeziform trapezium trapezoid trema tremata Trematoda trenchant trepan triact triactinal triad triaene triage triangle triangular triangulate triaulic triaxial triaxon tribe tribocytic trichite trichobothrium trichobranchia trichobranchiate trichocerous trichodes trichodeum trichodragmata trichogen trichoid trichomes trichophore trichopore trichosors trichostichal trichotomous trichroism tricolumella tricomes tricostate tricrepid tricuspid tricuspidate tridactyl trident tridentate trifid trifurcate triglycerides trignathan trigonal trigoneutism trilabiate trilateral trilobate trilocular trimorphic trimorphism Trinominal triordinal tripartite tripectinate triplet triploblastic triploid triquetral triquetrous triradiate triradiates tritocerebral tritocerebrum tritocerebrum tritonymph tritosternum triturate triungulin triungulinid trivial trivium trivoltine trixenic troch trochal trochalopodous trochantellus trochanter trochanteral trochantin trochi trochiform trochlea trocholophous trochophore trochosphere trochus troglobiont troglodytic troglophile trogloxene tropeic trophal trophallactic trophallaxis trophamnion trophi trophic trophidium trophobiont trophobiont trophobiosis trophobiotic trophocytes trophodisc trophogeny trophoporic trophorhinium trophosome trophotaxis trophothylax trophozooid trophus tropis tropism tropotaxis trumpet truncate truncation trunk trypsin tryptic tryptophan tryptophane T-tubule tube tube-feet tubercle tubercula tuberculate tuberculose tuberiferous tubicolous tubifacient tubule tubulus tubus tuft Tullgren tumefaction tumescence tumid tumulus tunic tunica tunicary tunicate turbinate turgid turreted turriculate tychoparthenogenesis tylasters tylenchoid tyli tyloid tyloides tylosis tylostyle tylote tylus tymbal tympanal tympanal tympanic tympanum Tyndall type typhlosole typologist typolysis typostasis
Resumo:
The new model of North Island Cenozoic palaeogeography developed by Kamp et al. has a range of important implications for the evolution of New Zealand terrestrial taxa over the past 30 Ma. Key aspects include the prolonged isolation of the biota on the North Island landmass from the larger and more diverse greater South Island, and the founding of North Island taxa from the potentially unusual ecosystem of a small island around Northland. The prolonged period of isolation is expected to have generated deep phylogenetic splits within taxa present on both islands, and an important current aim should be to identify such signals in surviving endemics to start building a picture of the historical phylogeography, and inferred ecology of both islands through the Cenozoic. Given the potential differences in founding terrestrial species and climatic conditions, it seems likely that the ecology may have been very diferent between the North and South Islands. New genetic data from the 10 or so species of extinct moa suggest that the radiation of moa was much more recent than previously suggested, and reveals a complex pattern that is inferred to result from the interplay of the Cenozoic biogeography, marine barriers, and glacial cycles.
Resumo:
The Australian region spans some 60° of latitude and 50° of longitude and displays considerable regional climate variability both today and during the Late Quaternary. A synthesis of marine and terrestrial climate records, combining findings from the Southern Ocean, temperate, tropical and arid zones, identifies a complex response of climate proxies to a background of changing boundary conditions over the last 35,000 years. Climate drivers include the seasonal timing of insolation, greenhouse gas content of the atmosphere, sea level rise and ocean and atmospheric circulation changes. Our compilation finds few climatic events that could be used to construct a climate event stratigraphy for the entire region, limiting the usefulness of this approach. Instead we have taken a spatial approach, looking to discern the patterns of change across the continent. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 ± 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Niño-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 ± 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Niño-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region.
Resumo:
Linkage of echolocation call production with contraction of flight muscles has been suggested to reduce the energetic cost of flight with echolocation, such that the overall cost is approximately equal to that of flight alone. However, the pattern of call production with limb movement in terrestrially agile bats has never been investigated. We used synchronised high-speed video and audio recordings to determine patterns of association between echolocation call production and limb motion by Mystacina tuberculata Gray 1843 as individuals walked and flew, respectively. Results showed that there was no apparent linkage between call production and limb motion when bats walked. When in flight, two calls were produced per wingbeat, late in the downstroke and early in the upstroke. When bats walked, calls were produced at a higher rate, but at a slightly lower intensity, compared with bats in flight. These results suggest that M. tuberculata do not attempt to reduce the cost of terrestrial locomotion and call production through biomechanical linkage. They also suggest that the pattern of linkage seen when bats are in flight is not universal and that energetic savings cannot necessarily be explained by contraction of muscles associated with the downstroke alone.
Resumo:
Bats (Chiroptera) are generally awkward crawlers, but the common vampire bat (Desmodus rotundus) and the New Zealand short-tailed bat (Mystacina tuberculata) have independently evolved the ability to manoeuvre well on the ground. In this study we describe the kinematics of locomotion in both species, and the kinetics of locomotion in M. tuberculata. We sought to determine whether these bats move terrestrially the way other quadrupeds do, or whether they possess altogether different patterns of movement on the ground than are observed in quadrupeds that do not fly. Using high-speed video analyses of bats moving on a treadmill, we observed that both species possess symmetrical lateral-sequence gaits similar to the kinematically defined walks of a broad range of tetrapods. At high speeds, D. rotundus use an asymmetrical bounding gait that appears to converge on the bounding gaits of small terrestrial mammals, but with the roles of the forelimbs and hindlimbs reversed. This gait was not performed by M. tuberculata. Many animals that possess a single kinematic gait shift with increasing speed from a kinetic walk (where kinetic and potential energy of the centre of mass oscillate out of phase from each other) to a kinetic run (where they oscillate in phase). To determine whether the single kinematic gait of M. tuberculata meets the kinetic definition of a walk, a run, or a gait that functions as a walk at low speed and a run at high speed, we used force plates and high-speed video recordings to characterize the energetics of the centre of mass in that species. Although oscillations in kinetic and potential energy were of similar magnitudes, M. tuberculata did not use pendulum-like exchanges of energy between them to the extent that many other quadrupedal animals do, and did not transition from a kinetic walk to kinetic run with increasing speed. The gait of M. tuberculata is kinematically a walk, but kinetically run-like at all speeds.
Resumo:
As a large, isolated and relatively ancient landmass, New Zealand occupies a unique place in the biological world, with distinctive terrestrial biota and a high proportion of primitive endemic forms. Biology Aotearoa covers the origins, evolution and conservation of the New Zealand flora, fauna and fungi. Each chapter is written by specialists in the field, often working from different perspectives to build up a comprehensive picture. Topics include: the geological history of our land origins, and evolution of our plants, animals and fungi current status of rare and threatened species past, present and future management of native species the effect of human immigration on the native biota.