1000 resultados para Teaching algorithms
Resumo:
This paper continues the author’s team research on development, implementation, and experimentation of a task-oriented environment for teaching and learning algorithms. This environment is a part of a large-scale environment for course teaching in different domains. The paper deals only with the UML project of the teaching team’s side of the environment.. The implementation of the project ideas is demonstrated on a WINDOWS-based environment’s prototype.
Resumo:
The course of Algorithms and Programming reveals as real obstacle for many students during the computer courses. The students not familiar with new ways of thinking required by the courses as well as not having certain skills required for this, encounter difficulties that sometimes result in the repetition and dropout. Faced with this problem, that survey on the problems experienced by students was conducted as a way to understand the problem and to guide solutions in trying to solve or assuage the difficulties experienced by students. In this paper a methodology to be applied in a classroom based on the concepts of Meaningful Learning of David Ausubel was described. In addition to this theory, a tool developed at UFRN, named Takkou, was used with the intent to better motivate students in algorithms classes and to exercise logical reasoning. Finally a comparative evaluation of the suggested methodology and traditional methodology was carried out, and results were discussed
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.
Resumo:
This research attempted to address the question of the role of explicit algorithms and episodic contexts in the acquisition of computational procedures for regrouping in subtraction. Three groups of students having difficulty learning to subtract with regrouping were taught procedures for doing so through either an explicit algorithm, an episodic content or an examples approach. It was hypothesized that the use of an explicit algorithm represented in a flow chart format would facilitate the acquisition and retention of specific procedural steps relative to the other two conditions. On the other hand, the use of paragraph stories to create episodic content was expected to facilitate the retrieval of algorithms, particularly in a mixed presentation format. The subjects were tested on similar, near, and far transfer questions over a four-day period. Near and far transfer algorithms were also introduced on Day Two. The results suggested that both explicit and episodic context facilitate performance on questions requiring subtraction with regrouping. However, the differential effects of these two approaches on near and far transfer questions were not as easy to identify. Explicit algorithms may facilitate the acquisition of specific procedural steps while at the same time inhibiting the application of such steps to transfer questions. Similarly, the value of episodic context in cuing the retrieval of an algorithm may be limited by the ability of a subject to identify and classify a new question as an exemplar of a particular episodically deflned problem type or category. The implications of these findings in relation to the procedures employed in the teaching of Mathematics to students with learning problems are discussed in detail.
Resumo:
In this paper we describe a scheduler simulator for real-time tasks, RTsim, that can be used as a tool to teach real-time scheduling algorithms. It simulates a variety of preprogrammed scheduling policies for single and multi-processor systems and simple algorithm variants introduced by its user. Using RTsim students can conduct experiments that will allow them to understand the effects of each policy given different load conditions and learn which policy is better for different workloads. We show how to use RTsim as a learning tool and the results achieved with its application on the Real-Time Systems course taught at the B.Sc. on Computer Science at Paulista State University - Unesp - at Rio Preto.
Resumo:
Using robots for teaching is one approach that has gathered good results on Middle-School, High-School and Universities. Robotics gives chance to experiment concepts of a broad range of disciplines, principally those from Engineering courses and Computer Science. However, there are not many kits that enables the use of robotics in classroom. This article describes the methodologies to implement tools which serves as test beds for the use of robotics to teach Computer Science and Engineering. Therefore, it proposes the development of a flexible, low cost hardware to integrate sensors and control actuators commonly found on mobile robots, the development of a mobile robot device whose sensors and actuators allows the experimentation of different concepts, and an environment for the implementation of control algorithms through a computer network. This paper describes each one of these tools and discusses the implementation issues and future works. © 2010 IEEE.
Resumo:
This paper aims to present the use of a learning object (CADILAG), developed to facilitate understanding data structure operations by using visual presentations and animations. The CADILAG allows visualizing the behavior of algorithms usually discussed during Computer Science and Information System courses. For each data structure it is possible visualizing its content and its operation dynamically. Its use was evaluated an the results are presented. © 2012 AISTI.
Resumo:
This article purposes the ARBot, a system that has as main objective the presentation of concepts of logic for students of elementary and secondary education. The system was developed using the technology known as Augmented Reality (AR), which allows complement the actual environment where the user is, by adding virtual objects. In this scenario the RA created from a virtual game interface is used, through which cognitive challenges are presented. To solve these challenges, users must set up three-dimensional virtual characters using visual language. As a result it follows that, in a playful way, concepts of algorithms and programming are assimilated by users. In addition, the system enables two users to interact in a cooperative game mode. In cooperative mode, the system focuses on collaborative learning, since it allows users to jointly solve the cognitive challenge presented by the system.
Resumo:
In this article, we present a new framework oriented to teach Computer Vision related subjects called JavaVis. It is a computer vision library divided in three main areas: 2D package is featured for classical computer vision processing; 3D package, which includes a complete 3D geometric toolset, is used for 3D vision computing; Desktop package comprises a tool for graphic designing and testing of new algorithms. JavaVis is designed to be easy to use, both for launching and testing existing algorithms and for developing new ones.
Resumo:
This article describes the design and implementation of computer-aided tool called Relational Algebra Translator (RAT) in data base courses, for the teaching of relational algebra. There was a problem when introducing the relational algebra topic in the course EIF 211 Design and Implementation of Databases, which belongs to the career of Engineering in Information Systems of the National University of Costa Rica, because students attending this course were lacking profound mathematical knowledge, which led to a learning problem, being this an important subject to understand what the data bases search and request do RAT comes along to enhance the teaching-learning process.It introduces the architectural and design principles required for its implementation, such as: the language symbol table, the gramatical rules and the basic algorithms that RAT uses to translate from relational algebra to SQL language. This tool has been used for one periods and has demonstrated to be effective in the learning-teaching process. This urged investigators to publish it in the web site: www.slinfo.una.ac.cr in order for this tool to be used in other university courses.
Resumo:
The models of teaching social sciences and clinical practice are insufficient for the needs of practical-reflective teaching of social sciences applied to health. The scope of this article is to reflect on the challenges and perspectives of social science education for health professionals. In the 1950s the important movement bringing together social sciences and the field of health began, however weak credentials still prevail. This is due to the low professional status of social scientists in health and the ill-defined position of the social sciences professionals in the health field. It is also due to the scant importance attributed by students to the social sciences, the small number of professionals and the colonization of the social sciences by the biomedical culture in the health field. Thus, the professionals of social sciences applied to health are also faced with the need to build an identity, even after six decades of their presence in the field of health. This is because their ambivalent status has established them as a partial, incomplete and virtual presence, requiring a complex survival strategy in the nebulous area between social sciences and health.
Biased Random-key Genetic Algorithms For The Winner Determination Problem In Combinatorial Auctions.
Resumo:
Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.
Resumo:
The two-arm Clinical Decisions/Diagnostic Workshop (CD/DW) approach to undergraduate medical education has been successfully used in Brazil. Present the CD/DW approach to the teaching of stroke, with the results of its pre-experimental application and of a comparative study with the traditional lecture-case discussion approach. Application of two questionnaires (opinion and Knowledge-Attitudes-Perceptions-KAP) to investigate the non-inferiority of the CD/DW approach. The method was well accepted by teachers and students alike, the main drawback being the necessarily long time for its completion by the students, a feature that may better cater for different educational needs. The comparative test showed the CD/DW approach to lead to slightly higher cognitive acquisition as opposed to the traditional method, clearly showing its non-inferiority status. The CD/DW approach seems to be another option for teaching neurology in undergraduate medical education, with the bonus of respecting each learner`s time.