840 resultados para TURTLE RETINA
Resumo:
The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has ail ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working ill the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.
Resumo:
The retinal circuitry underlying the release of dopamine was examined in the turtle, Pseudemys scripta elegans, using neurochemical release studies, anatomical techniques, and biochemistry. There was a dose- and calcium-dependent release of dopamine from turtle retinas incubated in $\sp3$H-dopamine after perfusion of the GABA antagonist bicuculline. This indicated that dopamine release was tonically inhibited by GABA. Other putative retinal transmitters were examined. Glutamate antagonists selective for hyperpolarizing bipolar cells, such as 2,3-piperidine dicarboxylic acid (PDA), caused dose- and calcium-dependent release of dopamine from the retina. In contrast, release was not observed after perfusion with 4-aminophosphonobutyric acid, a specific antagonist of depolarizing bipolar cells. This indicated that depolarizing bipolar cells were not involved in retinal circuitry underlying the release of dopamine in the turtle retina. The release produced by PDA was blocked by bicuculline, indicating a polysynaptic mechanism of release. None of the other agents tested, which included carbachol, strychnine, dopamine uptake inhibitors, serotonin, tryptamine, muscimol, melatonin, or dopamine itself produced release.^ The cells capable of the release of dopamine were identified using both uptake autoradiography and immunocytochemical localization with dopamine antisera. The simplest circuitry based on these findings is signal transmission from photoreceptors to hyperpolarizing bipolar cells then to GABAergic cells, and finally to dopaminergic amacrine cells. ^
Resumo:
Müller cells are the main glial cells in the retina, and are related to plexiform layer activity. Recent studies have demonstrated that Müller cells are involved in the synaptic conservation, plasticity, development and metabolism of glutamate. During turtle retinal development, layers, cells and synapses appear at different times. The aim of this research is to study the emergence of Müller cells during embryonic development and their relationship with the synaptogenesis. The authors used retinas from Trachemys scripta elegans embryos at stages S14, 18, 20, 23, and 26. Some retinas were processed with immunocytochemistry in order to detect the presence of glutamine synthetase in Müller cells, which was used as a marker of these cells. Other retinas from the same stages were processed for ultrastructural studies. Samples were observed in confocal and transmission electron microscopes, respectively. The present results show that glutamine synthetase expression in Müller cells occurs at S18, before the emergence of the retinal layers and the early synapses.
Resumo:
This thesis describes an investigation of retinal directional selectivity. We show intracellular (whole-cell patch) recordings in turtle retina which indicate that this computation occurs prior to the ganglion cell, and we describe a pre-ganglionic circuit model to account for this and other findings which places the non-linear spatio-temporal filter at individual, oriented amacrine cell dendrites. The key non-linearity is provided by interactions between excitatory and inhibitory synaptic inputs onto the dendrites, and their distal tips provide directionally selective excitatory outputs onto ganglion cells. Detailed simulations of putative cells support this model, given reasonable parameter constraints. The performance of the model also suggests that this computational substructure may be relevant within the dendritic trees of CNS neurons in general.
Resumo:
Many animal species make use of ultraviolet (UV) light in a number of behaviors, such as feeding and mating. The goldfish (Carassius auratus) is among those with a UV photoreceptor and pronounced UV sensitivity. Little is known, however, about the retinal processing of this input. We addressed this issue by recording intracellularly from second-order neurons in the adult goldfish retina. In order to test whether cone-driven horizontal cells (HCs) receive UV cone inputs, we performed chromatic adaptation experiments with mono- and biphasic HCs. We found no functional evidence of a projection from the UV-sensitive cones to these neurons in adult animals. This suggests that goldfish UV receptors may contact preferentially triphasic HCs, which is at odds with the hypothesis that all cones contact all cone-driven HC types. However, we did find evidence of direct M-cone input to monophasic HCs, favoring the idea that cone-HC contacts are more promiscuous than originally proposed. Together, our results suggest that either UV cones have a more restricted set of post-synaptic partners than the other three cone types, or that the UV input to mono- and biphasic HCs is not very pronounced in adult animals.
Resumo:
Accused of being autobiographical, as many debut novels often are, Turtle, upon first reading and further prying, does read as a story wrenched out of Gary Bryson’s own life. In a recent interview with Mandy Sayer, however, he was quick to deny all sorts of archetypal allegations. “Any resemblance to turtles living or dead”, Bryson explained, “is entirely coincidental”. Regardless of the many parallels that align author with protagonist—both were born and raised in a grey-skied Glasgow, both grew up in self-described dysfunctional families, and both returned to the colourless city to attend their mothers’ funerals—the narrative combines bruising black comedy with moments of magic realism. The result is an unlikely but often surprising concoction of twists and turns, each of which mixes the fallibility of memory with the slippery nature of truth. This playfulness between the material world and its metaphorical counterpart raises questions, not only about the curse that poisons its characters, but about the ethical implications of blurring fact and fiction...
Resumo:
“Turtle Twilight” is a two-screen video installation. Paragraphs of text adapted from a travel blog type across the left-hand screen. A computer-generated image of a tropical sunset is slowly animated on the right-hand screen. The two screens are accompanied by an atmospheric stock music track. This work examines how we construct, represent and deploy ‘nature’ in our contemporary lives. It mixes cinematic codes with image, text and sound gleaned from online sources. By extending on Nicolas Bourriad’s understanding of ‘postproduction’ and the creative and critical strategies of ‘editing’, it questions the relationship between contemporary screen culture, nature, desire and contemplation.
Resumo:
Purpose: To investigate early functional changes of local retinal defects in type II diabetic patients using the global flash multifocal electroretinogram (MOFO mfERG). Methods: Thirty-eight diabetic patients and 14 age-matched controls were recruited. Nine of the diabetics were free from diabetic retinopathy (DR), while the remainder had mild to moderate non-proliferative diabetic retinopathy. The MOFO mfERG was performed at high (98%) and low (46%) contrast levels. MfERG responses were grouped into 35 regions for comparison with DR classification at those locations. Z-scores of the regional mfERG responses were compared across different types of DR defects. Results: The mfERG waveform consisted of the direct component (DC) and the induced component (IC). Local reduction in DC and IC amplitudes were found in diabetic patients with and without DR. With increasing severity of retinopathy, there was a further deterioration in amplitude of both components. Under MOFO mfERG paradigm, amplitude was a useful screening parameter. Conclusion: The MOFO mfERG can help in detecting early functional anomalies before the appearance of visible signs, and may assist in monitoring further functional deterioration in diabetic patients.
Resumo:
In September 1998, an outbreak of gastroenteritis occurred in a coastal Aboriginal community in the Northern Territory over a seven day period. An investigation was conducted by the Center for Disease Control, Territory Health Services. Thirty-six cases were detected and 17% (n=6) were hospitalized. Salmonella chester was isolated from eight of nine stool specimens. Sixty-two percent of cases interviewed (n=28) reported consumption of a green turtle (Chelonia mydas) within a median of 24 hours prior to onset of illness. Of the remainder, all but two were contacts of other cases. Salmonella chester was isolated from a section of partially cooked turtle meat. There are no previous published reports of salmonellosis associated with consumption of sea turtles despite them being a popular food source in coastal communities in the Pacific.
Resumo:
On 18 September 1998 the Centre for Disease Control (CDC), Darwin was notified of an outbreak of gastroenteritis predominantly affecting adults in a Top End coastal community. There had been no previous presentations to the community clinic in the month of September with vomiting or diarrhoea. On 14 September, a green turtle (Chledonia mydas) was cooked and distributed throughout the community. Water collected from a water hole near the community (known as the aerator) was used as drinking water at the cook site and to cook the meat. In addition, there were reports that kava, a plant derived tranquilliser,1 had been consumed the night before using water from the same source. An investigation was conducted to determine the aetiology and source and to instigate prevention and control measures.
Resumo:
In a recent paper, Wang and colleagues described the genomes of two turtles, the Chinese soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas)1. A salient finding was an apparent absence of GHRL, the gene encoding the only known circulating orexigen, the peptide hormone ghrelin. The highly conserved GHRL encodes at least two bioactive peptide hormones, ghrelin2 and obestatin3, which are recognized to have a diverse range of functions in a number of cell types and physiological systems4, 5. Wang and colleagues hypothesized that the absence of ghrelin was associated with the low metabolic rate observed in these turtle species1.
Resumo:
Herbivorous turtle, Chelonia mydas, inhabiting the south China Sea and breeding in Peninsular Malaysia, and Natator depressus, a carnivorous turtle inhabiting the Great Barrier Reef and breeding at Curtis Island in Queensland, Australia, differ both in diet and life history. Analysis of plasma metabolites levels and six sex steroid hormones during the peak of their nesting season in both species showed hormonal and metabolite variations. When compared with results from other studies progesterone levels were the highest whereas dihydrotestosterone was the plasma steroid hormone present at the lowest concentration in both C. mydas and N. depressus plasma. Interestingly, oestrone was observed at relatively high concentrations in comparison to oestradiol levels recorded in previous studies suggesting that it plays a significant role in nesting turtles. Also, hormonal correlations between the studied species indicate unique physiological interactions during nesting. Pearson correlation analysis showed that in N. depressus the time of oviposition was associated with elevations in both plasma corticosterone and oestrone levels. Therefore, we conclude that corticosterone and oestrone may influence nesting behaviour and physiology in N. depressus. To summarise, these two nesting turtle species can be distinguished based on the hormonal profile of oestrone, progesterone, and testosterone using discriminant analysis.