966 resultados para TUBULAR DEFECTS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alexandre CS, Braganca AC, Shimizu MH, Sanches TR, Fortes MA, Giorgi RR, Andrade L, Seguro AC. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression. Am J Physiol Renal Physiol 297: F916-F922, 2009. First published August 5, 2009; doi:10.1152/ajprenal.90256.2008.-Sirolimus, an antiproliferative immunosuppressant, induces hypomagnesemia and hypokalemia. Rosiglitazone activates renal sodiumand water-reabsorptive pathways. We evaluated whether sirolimus induces renal wasting of magnesium and potassium, attempting to identify the tubule segments in which this occurs. We tested the hypothesis that reduced expression of the cotransporter NKCC2 forms the molecular basis of this effect and evaluated the possible association between increased urinary excretion of magnesium and renal expression of the epithelial Mg(2+) channel TRPM6. We then analyzed whether rosiglitazone attenuates these sirolimus-induced tubular effects. Wistar rats were treated for 14 days with sirolimus (3 mg/kg body wt in drinking water), with or without rosiglitazone (92 mg/kg body wt in food). Protein abundance of NKCC2, aquaporin2 (AQP2), and TRPM6 was assessed using immunoblotting. Sirolimus-treated animals presented no change in glomerular filtration rate, although there were marked decreases in plasma potassium and magnesium. Sirolimus treatment reduced expression of NKCC2, and this was accompanied by greater urinary excretion of sodium, potassium, and magnesium. In sirolimus-treated animals, AQP2 expression was reduced. Expression of TRPM6 was increased, which might represent a direct stimulatory effect of sirolimus or a compensatory response. The finding that rosiglitazone prevented or attenuated all sirolimus-induced renal tubular defects has potential clinical implications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Renal evaluation studies are rare in American Cutaneous Leishmaniasis (ACL). The aim of this study is to investigate whether specific treatment reverts ACL-associated renal dysfunction. Methods: A prospective study was conducted with 37 patients with ACL. Urinary concentrating and acidification ability was assessed before and after treatment with pentavalent antimonial. Results: The patients mean age was 35.6 +/- 12 years and 19 were male. Before treatment, urinary concentrating defect (U/P-osm < 2.8) was identified in 27 patients (77%) and urinary acidification defect in 17 patients (46%). No significant glomerular dysfunction was observed before and after specific ACL treatment. There was no reversion of urinary concentrating defects, being observed in 77% of the patients before and in 88% after treatment (p = 0.344). Urinary acidification defect was corrected in 9 patients after treatment, reducing its prevalence from 40% before to only 16% after treament, (p = 0.012). Microalbuminuria higher than 30 mg/g was found in 35% of patients before treatment and in only 8% after treatment. Regarding fractional excretion of sodium, potassium, calcium, phosphorus and magnesium, there was no significant difference between pre and post-treatment period. Conclusion: As previously described, urinary concentrating and acidification defects were found in an important number of patients with ACL. Present results demonstrate that only some patients recover urinary acidification capacity, while no one returned to normal urinary concentration capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Renal evaluation studies are rare in American Cutaneous Leishmaniasis (ACL). The aim of this study is to investigate whether specific treatment reverts ACL-associated renal dysfunction. Methods A prospective study was conducted with 37 patients with ACL. Urinary concentrating and acidification ability was assessed before and after treatment with pentavalent antimonial. Results The patients mean age was 35.6 ± 12 years and 19 were male. Before treatment, urinary concentrating defect (U/Posm <2.8) was identified in 27 patients (77%) and urinary acidification defect in 17 patients (46%). No significant glomerular dysfunction was observed before and after specific ACL treatment. There was no reversion of urinary concentrating defects, being observed in 77% of the patients before and in 88% after treatment (p = 0.344). Urinary acidification defect was corrected in 9 patients after treatment, reducing its prevalence from 40% before to only 16% after treament, (p = 0.012). Microalbuminuria higher than 30 mg/g was found in 35% of patients before treatment and in only 8% after treatment. Regarding fractional excretion of sodium, potassium, calcium, phosphorus and magnesium, there was no significant difference between pre and post-treatment period. Conclusion As previously described, urinary concentrating and acidification defects were found in an important number of patients with ACL. Present results demonstrate that only some patients recover urinary acidification capacity, while no one returned to normal urinary concentration capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing need for successful bone tissue engineering strategies and advanced biomaterials that mimic the structure and function of native tissues carry great promise. Successful bone repair approaches may include an osteoconductive scaffold, osteoinductive growth factors, cells with an osteogenic potential and capacity for graft vascularisation. To increase osteoinductivity of biomaterials, the local combination and delivery of growth factors has been developed. In the present study we investigated the osteogenic effects of calcium phosphate (CaP)-coated nanofiber mesh tube-mediated delivery of BMP-7 from a PRP matrix for the regeneration of critical sized segmental bone defects in a small animal model. Bilateral full-thickness diaphyseal segmental defects were created in twelve male Lewis rats and nanofiber mesh tubes were placed around the defect. Defects received either treatment with a CaP-coated nanofiber mesh tube (n = 6), an un-coated nanofiber mesh tube (n=6) a CaP-coated nanofiber mesh tube with PRP (n=6) or a CaP-coated nanofiber mesh tube in combination with 5 μg BMP-7 and PRP (n = 6). After 12 weeks, bone volume and biomechanical properties were evaluated using radiography, microCT, biomechanical testing and histology. The results demonstrated significantly higher biomechanical properties and bone volume for the BMP group compared to the control groups. These results were supported by the histological evaluations, where BMP group showed the highest rate of bone regeneration within the defect. In conclusion, BMP-7 delivery via PRP enhanced functional bone defect regeneration, and together these data support the use of BMP-7 in the treatment of critical sized defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Primary distal renal tubular acidosis (dRTA) caused by mutations in the genes that codify for the H+ -ATPase pump subunits is a heterogeneous disease with a poor phenotype-genotype correlation. Up to now, large cohorts of dRTA Tunisian patients have not been analyzed, and molecular defects may differ from those described in other ethnicities. We aim to identify molecular defects present in the ATP6V1B1, ATP6V0A4 and SLC4A1 genes in a Tunisian cohort, according to the following algorithm: first, ATP6V1B1 gene analysis in dRTA patients with sensorineural hearing loss (SNHL) or unknown hearing status. Afterwards, ATP6V0A4 gene study in dRTA patients with normal hearing, and in those without any structural mutation in the ATP6V1B1 gene despite presenting SNHL. Finally, analysis of the SLC4A1 gene in those patients with a negative result for the previous studies. Methods: 25 children (19 boys) with dRTA from 20 families of Tunisian origin were studied. DNAs were extracted by the standard phenol/chloroform method. Molecular analysis was performed by PCR amplification and direct sequencing. Results: In the index cases, ATP6V1B1 gene screening resulted in a mutation detection rate of 81.25%, which increased up to 95% after ATP6V0A4 gene analysis. Three ATP6V1B1 mutations were observed: one frameshift mutation (c.1155dupC; p.Ile386fs), in exon 12; a G to C single nucleotide substitution, on the acceptor splicing site (c.175-1G > C; p.?) in intron 2, and one novel missense mutation (c. 1102G > A; p. Glu368Lys), in exon 11. We also report four mutations in the ATP6V0A4 gene: one single nucleotide deletion in exon 13 (c.1221delG; p. Met408Cysfs* 10); the nonsense c.16C > T; p.Arg6*, in exon 3; and the missense changes c.1739 T > C; p.Met580Thr, in exon 17 and c.2035G > T; p.Asp679Tyr, in exon 19. Conclusion: Molecular diagnosis of ATP6V1B1 and ATP6V0A4 genes was performed in a large Tunisian cohort with dRTA. We identified three different ATP6V1B1 and four different ATP6V0A4 mutations in 25 Tunisian children. One of them, c.1102G > A; p.Glu368Lys in the ATP6V1B1 gene, had not previously been described. Among deaf since childhood patients, 75% had the ATP6V1B1 gene c. 1155dupC mutation in homozygosis. Based on the results, we propose a new diagnostic strategy to facilitate the genetic testing in North Africans with dRTA and SNHL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic pulse reflectometry is used to reconstruct the internal bore profile of trumpet and cornet leadpipe. The method distinguishes between radii differences as small as 0.03 mm, and has since been used by various UK-based brass instrument manufacturers as a diagnostic tool to detect defects that are significant enough to acoustically alter performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital distal renal tubular acidosis (dRTA) from mutations of the B1 subunit of the V-ATPase is considered an autosomal recessive disease. We analyzed a dRTA kindred with a truncation-mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of the V-ATPase. All heterozygous carriers in this kindred have normal plasma bicarbonate concentrations, thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria are present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also have inappropriate urinary acidification with acute ammonium chloride loading and impaired urine-blood pCO2 gradient during bicarbonaturia indicating presence of H+ gradient and flux defects. In normal human renal papillae, wild type B1 is located primarily on the plasma membrane but papilla from one of the heterozygote who had kidney stones had renal tissue secured from surgery showed B1 in both plasma membrane as well as a diffuse intracellular staining. Titrating increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+-pump activity of the wild type B1 in mammalian HEK293 cells and in V-ATPase-deficient S. cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of mutant B1 subunit; which cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary distal renal tubular acidosis (dRTA) is characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Kindreds showing either autosomal dominant or recessive transmission are described. Mutations in the chloride-bicarbonate exchanger AE1 have recently been reported in four autosomal dominant dRTA kindreds, three of these altering codon Arg589. We have screened 26 kindreds with primary dRTA for mutations in AE1. Inheritance was autosomal recessive in seventeen kindreds, autosomal dominant in one, and uncertain due to unknown parental phenotype or sporadic disease in eight kindreds. No mutations in AE1 were detected in any of the autosomal recessive kindreds, and analysis of linkage showed no evidence of linkage of recessive dRTA to AE1. In contrast, heterozygous mutations in AE1 were identified in the one known dominant dRTA kindred, in one sporadic case, and one kindred with two affected brothers. In the dominant kindred, the mutation Arg-589/Ser cosegregated with dRTA in the extended pedigree. An Arg-589/His mutation in the sporadic case proved to be a de novo mutation. In the third kindred, affected brothers both have an intragenic 13-bp duplication resulting in deletion of the last 11 amino acids of AE1. These mutations were not detected in 80 alleles from unrelated normal individuals. These findings underscore the key role of Arg-589 and the C terminus in normal AE1 function, and indicate that while mutations in AE1 cause autosomal dominant dRTA, defects in this gene are not responsible for recessive disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, poly (e-caprolactone) [PCL] and its collagen composite blend (PCL=Col) were fabricated to scaffolds using electrospinning method. Incorporated collagen was present on the surface of the fibers, and it modulated the attachment and proliferation of pig bone marrow mesenchymal cells (pBMMCs). Osteogenic differentiation markers were more pronounced when these cells were cultured on PCL=Col fibrous meshes, as determined by immunohistochemistry for collagen type I, osteopontin, and osteocalcin. Matrix mineralization was observed only on osteogenically induced PCL=Col constructs. Long bone analogs were created by wrapping osteogenic cell sheets around the PCL=Col meshes to form hollow cylindrical cell-scaffold constructs. Culturing these constructs under dynamic conditions enhanced bone-like tissue formation and mechanical strength.We conclude that electrospun PCL=Col mesh is a promising material for bone engineering applications. Its combination with osteogenic cell sheets offers a novel and promising strategy for engineering of tubular bone analogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of large non-unions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause bone marrow stromal cells to lose their differentiation ability. To overcome these limitations, we have genetically engineered bone marrow stromal cells to constitutively overexpress the osteoblast specific transcription factor Runx2. In the present study, we examined Runx2-modified bone marrow stromal cells, delivered via poly(caprolactone) scaffolds loaded with type I collagen meshes, in critically-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds and empty defects. Runx2 expression in bone marrow stromal cells accelerated healing of critically-sized defects compared to unmodified bone marrow stromal cells and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects which may reduce recovery time and the need for external fixation of critically-sized defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-sheet techniques have been proven effective in various soft tissue engineering applications. In this experiment, we investigated the feasibility of bone tissue engineering using a hybrid of mesenchymal stem cell (MSC) sheets and PLGA meshes. Porcine MSCs were cultured to a thin layer of cell sheets via osteogenic induction. Tube-like long bones were constructed by wrapping the cell sheet on to PLGA meshes resulting in constructs which could be cultured in spinner flasks, prior to implantation in nude rats. Our results showed that the sheets were composed of viable cells and dense matrix with a thickness of about 80–120 mm, mineral deposition was also observed in the sheet. In vitro cultures demonstrated calcified cartilage-like tissue formation and most PLGA meshes were absorbed during the 8-week culture period. In vivo experiments revealed that dense mineralized tissue was formed in subcutaneous sites and the 8- week plants shared similar micro-CT characteristics with native bone. The neo tissue demonstrated histological markers for both bone and cartilage, indicating that the bone formation pathway in constructs was akin to endochondral ossification, with the residues of PLGA having an effect on the neo tissue organization and formation. These results indicate that cell-sheet approaches in combination with custom-shaped scaffolds have potential in producing bone tissue.