877 resultados para TTR AMYLOID INHIBITOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transthyretin (TTR) is a carrier protein involved in human amyloidosis. The development of small molecules that may act as TTR amyloid inhibitors is a promising strategy to treat these pathologies. Here we selected and characterized the interaction of flavonoids with the wild type and the V30M amyloidogenic mutant TTR. TTR acid aggregation was evaluated in vitro in the presence of the different flavonoids. The best TTR aggregation inhibitors were studied by Isothermal Titration Calorimetry (ITC) in order to reveal their thermodynamic signature of binding to TTRwt. Crystal structures of TTRwt in complex with the top binders were also obtained, enabling us to in depth inspect TTR interactions with these flavonoids. The results indicate that changing the number and position of hydroxyl groups attached to the flavonoid core strongly influence flavonoid recognition by TTR, either by changing ligand affinity or its mechanism of interaction with the two sites of TTR. We also compared the results obtained for ITRwt with the V30M mutant structure in the apo form, allowing us to pinpoint structural features that may facilitate or hamper ligand binding to the V30M mutant. Our data show that the TTRwt binding site is labile and, in particular, the central region of the cavity is sensible for the small differences in the ligands tested and can be influenced by the Met30 amyloidogenic mutation, therefore playing important roles in flavonoid binding affinity, mechanism and mutant protein ligand binding specificities. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insoluble protein fibrils resulting from the self-assembly of a conformational intermediate are implicated as the causative agent in several severe human amyloid diseases, including Alzheimer’s disease, familial amyloid polyneuropathy, and senile systemic amyloidosis. The latter two diseases are associated with transthyretin (TTR) amyloid fibrils, which appear to form in the acidic partial denaturing environment of the lysosome. Here we demonstrate that flufenamic acid (Flu) inhibits the conformational changes of TTR associated with amyloid fibril formation. The crystal structure of TTR complexed with Flu demonstrates that Flu mediates intersubunit hydrophobic interactions and intersubunit hydrogen bonds that stabilize the normal tetrameric fold of TTR. A small-molecule inhibitor that stabilizes the normal conformation of a protein is desirable as a possible approach to treat amyloid diseases. Molecules such as Flu also provide the means to rigorously test the amyloid hypothesis, i.e., the apparent causative role of amyloid fibrils in amyloid disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transthyretin (TTR) amyloid fibril formation is observed systemically in familial amyloid polyneuropathy and senile systemic amyloidosis and appears to be the causative agent in these diseases. Herein, we demonstrate conclusively that thyroxine (10.8 μM) inhibits TTR fibril formation efficiently in vitro and does so by stabilizing the tetramer against dissociation and the subsequent conformational changes required for amyloid fibril formation. In addition, the nonnative ligand 2,4,6-triiodophenol, which binds to TTR with slightly increased affinity also inhibits TTR fibril formation by this mechanism. Sedimentation velocity experiments were employed to show that TTR undergoes dissociation (linked to a conformational change) to form the monomeric amyloidogenic intermediate, which self-assembles into amyloid in the absence, but not in the presence of thyroxine. These results demonstrate the feasibility of using small molecules to stabilize the native fold of a potentially amyloidogenic human protein, thus preventing the conformational changes, which appear to be the common link in several human amyloid diseases. This strategy and the compounds resulting from further development should prove useful for critically evaluating the amyloid hypothesis—i.e., the putative cause-and-effect relationship between TTR amyloid deposition and the onset of familial amyloid polyneuropathy and senile systemic amyloidosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transthyretin (TTR) tetramer dissociation and misfolding facilitate assembly into amyloid fibrils that putatively cause senile systemic amyloidosis and familial amyloid polyneuropathy. We have previously discovered more than 50 small molecules that bind to and stabilize tetrameric TTR, inhibiting amyloid fibril formation in vitro. A method is presented here to evaluate the binding selectivity of these inhibitors to TTR in human plasma, a complex biological fluid composed of more than 60 proteins and numerous small molecules. Our immunoprecipitation approach isolates TTR and bound small molecules from a biological fluid such as plasma, and quantifies the amount of small molecules bound to the protein by HPLC analysis. This approach demonstrates that only a small subset of the inhibitors that saturate the TTR binding sites in vitro do so in plasma. These selective inhibitors can now be tested in animal models of TTR amyloid disease to probe the validity of the amyloid hypothesis. This method could be easily extended to evaluate small molecule binding selectivity to any protein in a given biological fluid without the necessity of determining or guessing which other protein components may be competitors. This is a central issue to understanding the distribution, metabolism, activity, and toxicity of potential drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of therapeutic compounds targeting transthyretin (TTR) is challenging due to the low specificity of interaction in the hormone binding site. Such feature is highlighted by the interactions of TTR with diclofenac, a compound with high affinity for TTR, in two dissimilar modes, as evidenced by crystal structure of the complex. We report here structural analysis of the interactions of TTR with two small molecules, 1-amino-5-naphthalene sulfonate (1,5-AmNS) and 1-anilino-8-naphthalene sulfonate (1,8-ANS). Crystal structure of TTR: 1,8-ANS complex reveals a peculiar interaction, through the stacking of the naphthalene ring between the side-chain of Lys15 and Leu17. The sulfonate moiety provides additional interaction with Lys15` and a water-mediated hydrogen bond with Thr119`. The uniqueness of this mode of ligand recognition is corroborated by the crystal structure of TTR in complex with the weak analogue 1,5-AmNS, the binding of which is driven mainly by hydrophobic partition and one electrostatic interaction between the sulfonate group and the Lys15. The ligand binding motif unraveled by 1,8-ANS may open new possibilities to treat TTR amyloid diseases by the elucidation of novel candidates for a more specific pharmacophoric pattern. (C) 2009 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR.Zn(2+) binding perturbs loop E-alpha-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases similar to 5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the alpha-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. It was recently found that the isoflavone genistein (GEN) potently inhibits TTR amyloid fibril formation (Green et al., 2005) and is therefore a promising candidate for TTR amyloidosis treatment. Here we used structural and biophysical approaches to characterize genistein binding to the wild type (TTRwt) and to its most frequent amyloidogenic variant, the V30M mutant. In a dose-dependent manner, genistein elicited considerable increases in both mutant and TTRwt stability as demonstrated by high hydrostatic pressure (HHP) and acid-mediated dissociation/denaturation assays. TTR:GEN crystal complexes and isothermal titration calorimetry (ITC) experiments showed that the binding mechanisms of genistein to the TTRwt and to V30M are different and are dependent on apoTTR structure conformations. Furthermore, we could also identify potential allosteric movements caused by genistein binding to the wild type TTR that explains, at least in part, the frequently observed negatively cooperative process between the two sites of TTRwt when binding ligands. These findings show that TTR mutants may present different ligand recognition and therefore are of value in ligand design for inhibiting TTR amyloidosis. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Familial amyloid polyneuropathy (FAP) or paramiloidosis is an autosomal dominant neurodegenerative disease with onset on adult age that is characterized by mutated protein deposition in the form of amyloid substance. FAP is due to a point alteration in the transthyretin (TTR) gene and until now more than 100 amyloidogenic mutations have been described in TTR gene. FAP shows a wide variation in age-at-onset (AO) (19-82 years, in Portuguese cases) and the V30M mutation often runs through several generation of asymptomatic carriers, before expressing in a proband, but the protective effect disappear in a single generation, with offspring of late-onset cases having early onset. V30M mutation does not explain alone the symptoms and AO variability of the disease observed in the same family. Our aim in this study was to identify genetic factors associated with AO variability and reduced penetrance which can have important clinical implications. To accomplish this we genotyped 230 individuals, using a directautomated sequencing approach in order to identify possible genetic modifiers within the TTR locus. After genotyping, we assessed a putative association of the SNPs found with AO and an intensive in silico analysis was performed in order to understand a possible regulation of gene expression. Although we did not find any significant association between SNPs and AO, we found very interesting and unreported results in the in silico analysis since we observed some alterations in the mechanism of splicing, transcription factors binding and miRNAs binding. All of these mechanisms when altered can lead to dysregulation of gene expression, which can have an impact in AO and phenotypic variability. These putative mechanisms of regulation of gene expression within the TTR gene could be used in the future as potential therapeutical targets, and could improve genetic counselling and follow-up of mutation carriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biphenyl ethers (BPEs) are the potent inhibitors of TTR fibril formation and are efficient fibril disrupter. However, the mechanism by which the fibril disruption occurs is yet to be fully elucidated. To gain insight into the mechanism, we synthesized and used a new QD labeled BPE to track the process of fibril disruption. Our studies showed that the new BPE-QDs bind to the fiber uniformly and has affinity and specificity for TTR fiber and disrupted the pre-formed fiber at a relatively slow rate. Based on these studies we put forth the probable mechanism of fiber disruption by BPEs. Also, we show here that the BPE-QDs interact with high affinity to the amyloids of A beta(42), lysozyme and insulin. The potential of BPE-QDs in the detection of senile plaque in the brain of transgenic Alzheimer's mice has also been explored. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

hIAPP fibrillization implicated in Type 2 diabetes pathology involves formation of oligomers toxic to insulin producing pancreatic beta-cells. We report design, synthesis, 3D structure and functional characterization of dehydrophenylalanine (Delta F) containing peptides which inhibit hIAPP fibrillization. The inhibitor protects beta-cells from hIAPP induced toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like pro-enzyme that, once activated, attenuates fibrinolysis. TAFIa also possesses anti-inflammatory properties. Although liver is the main source of plasma TAFI, platelet-derived TAFI has also been reported. An alternatively spliced TAFI variant resulted from the skipping of exon 6 and a 52-base deletion in exon 10 of CPB2 mRNA (∆6+10) was described to be brain specific. This TAFI variant is reputed to possess a secretase-like activity that cleaves β-amyloid precursor protein to form β-amyloid, a process involved in the onset of Alzheimer's disease. In this thesis, we report the identification of CPB2 mRNA and TAFI protein in various vascular and inflammatory cells. Specifically, we describe the expression of CPB2 mRNA in the megakaryocytic cell lines MEG-01 and Dami, the monocytic cell line THP-1, and peripheral blood mononuclear cells. TAFI protein was detected in differentiated Dami and THP-1 cells. We next describe the effect of external stimuli such as phorbol myristate acetate (PMA) on CPB2 expression in Dami and THP-1 cells. We found that PMA treatment increases both CPB2 mRNA abundance and promoter activity in Dami cells, and decreases both CPB2 mRNA abundance and promoter activity in THP-1 cells. Deletion analysis of the CPB2 promoter indicated cell-type specific regulation of CPB2 gene expression. Finally, we evaluated the expression of alternatively spliced CPB2 mRNA variants in hepatic and non hepatic cells. We found that exon 6 skipping variants are expressed in all cell types of interest. The variant previously reported to be brain specific was also found to be expressed in platelets. We found that the alternatively spliced TAFI variants accumulated inside the cells in a non-secretable, hypoglycosylated form and showed no carboxypeptidase activity. Taken together, this thesis provides further evidence supporting the hypothesis that platelet-derived TAFI is originated from CPB2 gene expression in megakaryocytes. Moreover, our data imply a potential for site-specific anti-inflammatory control provided by macrophage-derived TAFI. Alternative splicing of the CPB2 mRNA may give rise to variants with an intracellular role, perhaps as a peptidase chaperone, and may modulate the synthesis of secretable TAFI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the course of our research efforts to develop a potent and selective gamma-secretase inhibitor for the treatment of Alzheimer's disease, we investigated a series of carboxamide-substituted sulfonamides. Optimization based on potency, Notch/amyloid-beta precursor protein selectivity, and brain efficacy after oral dosing led to the discovery of 4 (BMS-708163). Compound 4 is a potent inhibitor of gamma-secretase (A beta 40 IC50 = 0.30 nM), demonstrating a 193-fold selectivity against Notch. Oral administration of 4 significantly reduced A beta 40 levels for sustained periods in brain, plasma, and cerebrospinal fluid in rats and dogs.