1000 resultados para TRANSITION ENERGIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties of the strained wurtzite GaN are investigated theoretically within the nearest neighbor tight-binding method. The piezoelectric effect is also taken into account. The empirical rule has been used in the strained band-structure calculation. The results show that the excitonic transition energies are anisotropic in the c-plane in a high electronic concentration system and have a 60 degrees periodicity, which is in agreement with experiment. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3001937]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A modified self-consistent method is introduced for the design of AlxGa1-xN/GaN step quantum well (SQW) with the position and energy-dependent effective mass. The effects of nonparabolicity are included. It is shown that the nonparabolicity effect is minute for the lowest subband energy level and grows in size for the higher subband states. The effects of nonparabolicity have significant influence on the transition energies and the oscillator strengths and should be taken into account in the investigation of the optical transitions. The strong asymmetric property introduced by the step quantum well magnifies the weak intersubband transition from the ground state to the third state (1 -> 3). It is shown that in an appropriate scope, the intersubband transition (1 -> 3) has the comparable oscillator strength with transition from the ground state to the second one (1 -> 2), which suggests the possible application of the two-color photodetectors. The results of this work should provide useful guidance for the design of optically pumped asymmetric quantum well lasers and quantum well infrared photodetectors (QWIPs). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, we have adopted reflectance difference spectroscopy to study the evolution of InAs layer grown at different temperatures in GaAs matrix. Associated with the two- to three-dimensional growth transition of InAs layer, the transition energies and the in-plane optical anisotropy of InAs wetting layer exhibit abrupt changes. This provides a new way to decide the critical thickness h(c) for the growth transition. The obtained h(c)s are compared with those determined by atomic force microscope measurement, and discrepancy is found at high temperatures. The origin of the difference is clarified and the variations in hc with temperature are further discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494043]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the critical percolation conductance method the energy-dependent diffusion coefficient associated with thermally assisted transfer of the R1 line excitation between single Cr3+ ions with strain-induced randomness has been calculated in the 4A2 to E(2E) transition energies. For localized states sufficiently far away from the mobility edge the energy transfer is dominated by dipolar interactions, while very close to the mobility edge it is determined by short-range exchange interactions. Using the above energy-dependent diffusion coefficient a macroscopic diffusion equation is solved for the rate of light emission by Cr3+ ion-pair traps to which single-ion excitations are transferred. The dipolar mechanism leads to good agreement with recent measurements of the pair emission rate by Koo et al. (Phys. Rev. Lett., vol.35, p.1669 (1975)) right up to the mobility edge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orbital energies and electronic transition energies of BH3·H2S and BH3·CO obtained from ultraviolet (HeI) photoelectron spectroscopy and electron energy loss spectroscopy are discussed in the light of quantum mechanical calculations. BH3·H2O has been characterized, for the first time, by means of the HeI spectrum and the ionization energies assigned to the various orbitals based on calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron energy loss spectra (EELS) of Cr, Mo and W hexacarbonyls in the vapour phase are reported. Most of the bands observed are similar to those in optical spectra, but the two high energy transitions in the 9·8–11·2 eV region are reported here for the first time. Based on the orbital energies from the ultraviolet photoelectron spectra and the electronic transition energies from EELS and earlier optical studies, the molecular energy level schemes of these molecules are constructed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When an electron is injected into liquid helium, it forces open a cavity that is free of helium atoms (an electron bubble). If the electron is in the ground 1S state, this bubble is spherical. By optical pumping it is possible to excite a significant fraction of the electron bubbles to the 1P state; the bubbles then lose spherical symmetry. We present calculations of the energies of photons that are needed to excite these 1P bubbles to higher energy states (1D and 2S) and the matrix elements for these transitions. Measurement of these transition energies would provide detailed information about the shape of the 1P bubbles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental assessment of Li2MnO3 has been conducted, in conjunction with related Mn(IV) oxides, to investigate its red colour and photoluminescence. Optical absorption spectra revealed strong band gap absorption, with a sharp edge at similar to 610 nm and a transparent region between similar to 610 and similar to 650 nm, giving rise to the red colour of this compound. Octahedral Mn(IV) ligand field transitions have been observed in the excitation spectra of Li2MnO3, corresponding both to Mn(IV) at ideal sites and displaced in Li sites in the rock salt-based layered structure of Li2MnO3. Optical excitation at ligand field transition energies produces tunable emission in the red-yellow-green region, rendering Li2MnO3 a unique Mn(IV) oxide. The honeycomb-ordered LiMn6] units in its structure are probably the origin of both the absorption and the photoluminescent properties of Li2MnO3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complementary techniques of low-energy, variable-angle electron-impact spectroscopy and ultraviolet variable-angle photoelectron spectroscopy have been used to study the electronic spectroscopy and structure of several series of molecules. Electron-impact studies were performed at incident beam energies between 25 eV and 100 eV and at scattering angles ranging from 0° to 90°. The energy-loss regions from 0 eV to greater than 15 eV were studied. Photoelectron spectroscopic studies were conducted using a HeI radiation source and spectra were measured at scattering angles from 45° to 90°. The molecules studied were chosen because of their spectroscopic, chemical, and structural interest. The operation of a new electron-impact spectrometer with multiple-mode target source capability is described. This spectrometer has been used to investigate the spin-forbidden transitions in a number of molecular systems.

The electron-impact spectroscopy of the six chloro-substituted ethylenes has been studied over the energy-loss region from 0-15 eV. Spin-forbidden excitations corresponding to the π → π*, N → T transition have been observed at excitation energies ranging from 4.13 eV in vinyl chloride to 3.54 eV in tetrachloroethylene. Symmetry-forbidden transitions of the type π → np have been oberved in trans-dichloroethyene and tetrachlor oethylene. In addition, transitions to many states lying above the first ionization potential were observed for the first time. Many of these bands have been assigned to Rydberg series converging to higher ionization potentials. The trends observed in the measured transition energies for the π → π*, N → T, and N → V as well as the π → 3s excitation are discussed and compared to those observed in the methyl- and fluoro- substituted ethylenes.

The electron energy-loss spectra of the group VIb transition metal hexacarbonyls have been studied in the 0 eV to 15 eV region. The differential cross sections were obtained for several features in the 3-7 eV energy-loss region. The symmetry-forbidden nature of the 1A1g1A1g, 2t2g(π) → 3t2g(π*) transition in these compounds was confirmed by the high-energy, low-angle behavior of their relative intensities. Several low lying transitions have been assigned to ligand field transitions on the basis of the energy and angular behavior of the differential cross sections for these transitions. No transitions which could clearly be assigned to singlet → triplet excitations involving metal orbitals were located. A number of states lying above the first ionization potential have been observed for the first time. A number of features in the 6-14 eV energy-loss region of the spectra of these compounds correspond quite well to those observed in free CO.

A number of exploratory studies have been performed. The π → π*, N → T, singlet → triplet excitation has been located in vinyl bromide at 4.05 eV. We have also observed this transition at approximately 3.8 eV in a cis-/trans- mixture of the 1,2-dibromoethylenes. The low-angle spectrum of iron pentacarbonyl was measured over the energy-loss region extending from 2-12 eV. A number of transitions of 8 eV or greater excitation energy were observed for the first time. Cyclopropane was also studied at both high and low angles but no clear evidence for any spin- forbidden transitions was found. The electron-impact spectrum of the methyl radical resulting from the pyrolysis of tetramethyl tin was obtained at 100 eV incident energy and at 0° scattering angle. Transitions observed at 5.70 eV and 8.30 eV agree well with the previous optical results. In addition, a number of bands were observed in the 8-14 eV region which are most likely due to Rydberg transitions converging to the higher ionization potentials of this molecule. This is the first reported electron-impact spectrum of a polyatomic free radical.

Variable-angle photoelectron spectroscopic studies were performed on a series of three-membered-ring heterocyclic compounds. These compounds are of great interest due to their highly unusual structure. Photoelectron angular distributions using HeI radiation have been measured for the first time for ethylene oxide and ethyleneimine. The measured anisotropy parameters, β, along with those measured for cyclopropane were used to confirm the orbital correlations and photoelectron band assignments. No high values of β similar to those expected for alkene π orbitals were observed for the Walsh or Forster-Coulson-Moffit type orbitals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doping difficulty in semiconductor nanocrystals has been observed and its origin is currently under debate. It is not clear whether this phenomenon is energetic or depends on the growth kinetics. Using first-principles method, we show that the transition energies and defect formation energies of the donor and acceptor defects always increase as the quantum dot sizes decrease. However, for isovalent impurities, the changes of the defect formation energies are rather small. The origin of the calculated trends is explained using simple band-energy-level models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the effective-mass Hamiltonian for an arbitrary direction wurtzite semiconductor on the basis of k.p theory, we investigate the strain effects on the transition energies and optical properties in the R-plane ([1012]-oriented plane) GaN. The results show that (1) the transition energies decrease with the biaxial strains changing from -0.5 to 0.5%; and (2) giant optical anisotropy appears in the R-plane which is significantly affected by the biaxial strains. We clarify the relation between the strains and the polarization properties. Finally, we discuss the application of these properties to the R-plane GaN based devices. (c) 2009 The Japan Society of Applied Physics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantum-confined Stark effects in GaAs/AlxGa1-xAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that the electron and hole energy levels and the optical transition energies can cause blueshifts when the electric field is applied along the opposite to the growth direction. Our calculated results are useful for the application of hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices. (c) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic structures in the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that (1) electronic energy levels decrease monotonically, and the energy difference between the energy levels increases as the GaAs quantum dot (QD) height increases; (2) strong state mixing is found between the different energy levels as the GaAs QD width changes; (3) the hole energy levels decrease more quickly than those of the electrons as the GaAs QD size increases; (4) in excited states, the hole energy levels are closer to each other than the electron ones; (5) the first heavy- and light-hole transition energies are very close. Our theoretical results agree well with the available experimental data. Our calculated results are useful for the application of the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices.