935 resultados para TOPOGRAPHY
Resumo:
PURPOSE. This study was conducted to determine the magnitude of pupil center shift between the illumination conditions provided by corneal topography measurement (photopic illuminance) and by Hartmann-Shack aberrometry (mesopic illuminance) and to investigate the importance of this shift when calculating corneal aberrations and for the success of wavefront-guided surgical procedures. METHODS. Sixty-two subjects with emmetropia underwent corneal topography and Hartmann-Shack aberrometry. Corneal limbus and pupil edges were detected, and the differences between their respective centers were determined for both procedures. Corneal aberrations were calculated using the pupil centers for corneal topography and for Hartmann-Shack aberrometry. Bland-Altmann plots and paired t-tests were used to analyze the differences between corneal aberrations referenced to the two pupil centers. RESULTS. The mean magnitude (modulus) of the displacement of the pupil with the change of the illumination conditions was 0.21 ± 0.11 mm. The effect of this pupillary shift was manifest for coma corneal aberrations for 5-mm pupils, but the two sets of aberrations calculated with the two pupil positions were not significantly different. Sixty-eight percent of the population had differences in coma smaller than 0.05 µm, and only 4% had differences larger than 0.1 µm. Pupil displacement was not large enough to significantly affect other higher-order Zernike modes. CONCLUSIONS. Estimated corneal aberrations changed slightly between photopic and mesopic illumination conditions given by corneal topography and Hartmann-Shack aberrometry. However, this systematic pupil shift, according to the published tolerances ranges, is enough to deteriorate the optical quality below the theoretically predicted diffraction limit of wavefront-guided corneal surgery.
Corneal topography with Scheimpflug imaging and videokeratography : comparative study of normal eyes
Resumo:
PURPOSE: To compare the repeatability within anterior corneal topography measurements and agreement between measurements with the Pentacam HR rotating Scheimpflug camera and with a previously validated Placido disk–based videokeratoscope (Medmont E300). ------ SETTING: Contact Lens and Visual Optics Laboratory, School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia. ----- METHODS: Normal eyes in 101 young adult subjects had corneal topography measured using the Scheimpflug camera (6 repeated measurements) and videokeratoscope (4 repeated measurements). The best-fitting axial power corneal spherocylinder was calculated and converted into power vectors. Corneal higher-order aberrations (HOAs) (up to the 8th Zernike order) were calculated using the corneal elevation data from each instrument. ----- RESULTS: Both instruments showed excellent repeatability for axial power spherocylinder measurements (repeatability coefficients <0.25 diopter; intraclass correlation coefficients >0.9) and good agreement for all power vectors. Agreement between the 2 instruments was closest when the mean of multiple measurements was used in analysis. For corneal HOAs, both instruments showed reasonable repeatability for most aberration terms and good correlation and agreement for many aberrations (eg, spherical aberration, coma, higher-order root mean square). For other aberrations (eg, trefoil and tetrafoil), the 2 instruments showed relatively poor agreement. ----- CONCLUSIONS: For normal corneas, the Scheimpflug system showed excellent repeatability and reasonable agreement with a previously validated videokeratoscope for the anterior corneal axial curvature best-fitting spherocylinder and several corneal HOAs. However, for certain aberrations with higher azimuthal frequencies, the Scheimpflug system had poor agreement with the videokeratoscope; thus, caution should be used when interpreting these corneal aberrations with the Scheimpflug system.
Resumo:
Purpose: To investigate the influence of convergence on axial length and corneal topography in young adult subjects.---------- Methods: Fifteen emmetropic young adult subjects with normal binocular vision had axial length and corneal topography measured immediately before and after a 15-min period of base out (BO) prismatic spectacle lens wear. Two different magnitude prismatic spectacles were worn in turn (8 [DELTA] BO and 16 [DELTA] BO), and for both tasks, distance fixation was maintained for the duration of lens wear. Eight subjects returned on a separate day for further testing and had axial length measured before, during, and immediately after a 15-min convergence task.---------- Results: No significant change was found to occur in axial length either during or after the sustained convergence tasks (p > 0.6). Some small but significant changes in corneal topography were found to occur after sustained convergence. The most significant corneal change was observed after the 16 [DELTA] BO prism wear. The corneal refractive power spherocylinder power vector J0 was found to change by a small (mean change of 0.03 D after the 16 [DELTA] BO task) but statistically significant (p = 0.03) amount as a result of the convergence task (indicative of a reduction in with-the-rule corneal astigmatism after convergence). Corneal axial power was found to exhibit a significant flattening in superior regions. Conclusions: Axial length appears largely unchanged by a period of sustained convergence. However, small but significant changes occur in the topography of the cornea after convergence.
Resumo:
The problem of steady subcritical free surface flow past a submerged inclined step is considered. The asymptotic limit of small Froude number is treated, with particular emphasis on the effect that changing the angle of the step face has on the surface waves. As demonstrated by Chapman & Vanden-Broeck (2006), the divergence of a power series expansion in powers of the square of the Froude number is caused by singularities in the analytic continuation of the free surface; for an inclined step, these singularities may correspond to either the corners or stagnation points of the step, or both, depending on the angle of incline. Stokes lines emanate from these singularities, and exponentially small waves are switched on at the point the Stokes lines intersect with the free surface. Our results suggest that for a certain range of step angles, two wavetrains are switched on, but the exponentially subdominant one is switched on first, leading to an intermediate wavetrain not previously noted. We extend these ideas to the problem of flow over a submerged bump or trench, again with inclined sides. This time there may be two, three or four active Stokes lines, depending on the inclination angles. We demonstrate how to construct a base topography such that wave contributions from separate Stokes lines are of equal magnitude but opposite phase, thus cancelling out. Our asymptotic results are complemented by numerical solutions to the fully nonlinear equations.
Resumo:
An efficient numerical method to compute nonlinear solutions for two-dimensional steady free-surface flow over an arbitrary channel bottom topography is presented. The approach is based on a boundary integral equation technique which is similar to that of Vanden-Broeck's (1996, J. Fluid Mech., 330, 339-347). The typical approach for this problem is to prescribe the shape of the channel bottom topography, with the free-surface being provided as part of the solution. Here we take an inverse approach and prescribe the shape of the free-surface a priori while solving for the corresponding bottom topography. We show how this inverse approach is particularly useful when studying topographies that give rise to wave-free solutions, allowing us to easily classify eleven basic flow types. Finally, the inverse approach is also adapted to calculate a distribution of pressure on the free-surface, given the free-surface shape itself.
Resumo:
Strike-slip faults commonly display structurally complex areas of positive or negative topography. Understanding the development of such areas has important implications for earthquake studies and hydrocarbon exploration. Previous workers identified the key factors controlling the occurrence of both topographic modes and the related structural styles. Kinematic and stress boundary conditions are of first-order relevance. Surface mass transport and material properties affect fault network structure. Experiments demonstrate that dilatancy can generate positive topography even under simple-shear boundary conditions. Here, we use physical models with sand to show that the degree of compaction of the deformed rocks alone can determine the type of topography and related surface fault network structure in simple-shear settings. In our experiments, volume changes of ∼5% are sufficient to generate localized uplift or subsidence. We discuss scalability of model volume changes and fault network structure and show that our model fault zones satisfy geometrical similarity with natural flower structures. Our results imply that compaction may be an important factor in the development of topography and fault network structure along strike-slip faults in sedimentary basins.
Resumo:
A key question in neuroscience is how memory is selectively allocated to neural networks in the brain. This question remains a significant research challenge, in both rodent models and humans alike, because of the inherent difficulty in tracking and deciphering large, highly dimensional neuronal ensembles that support memory (i.e., the engram). In a previous study we showed that consolidation of a new fear memory is allocated to a common topography of amygdala neurons. When a consolidated memory is retrieved, it may enter a labile state, requiring reconsolidation for it to persist. What is not known is whether the original spatial allocation of a consolidated memory changes during reconsolidation. Knowledge about the spatial allocation of a memory, during consolidation and reconsolidation, provides fundamental insight into its core physical structure (i.e., the engram). Using design-based stereology, we operationally define reconsolidation by showing a nearly identical quantity of neurons in the dorsolateral amygdala (LAd) that expressed a plasticity-related protein, phosphorylated mitogen-activated protein kinase, following both memory acquisition and retrieval. Next, we confirm that Pavlovian fear conditioning recruits a stable, topographically organized population of activated neurons in the LAd. When the stored fear memory was briefly reactivated in the presence of the relevant conditioned stimulus, a similar topography of activated neurons was uncovered. In addition, we found evidence for activated neurons allocated to new regions of the LAd. These findings provide the first insight into the spatial allocation of a fear engram in the LAd, during its consolidation and reconsolidation phase.
Resumo:
Purpose To investigate the differences between and variations across time in corneal topography and ocular wavefront aberrations in young Singaporean myopes and emmetropes. Methods We used a videokeratoscope and wavefront sensor to measure the ocular surface topography and wavefront aberrations of the total eye optics in the morning, mid-day and late afternoon on two separate days. Topography data were used to derive the corneal surface wavefront aberrations. Both the corneal and total wavefronts were analysed up to the 4th radial order of the Zernike polynomial expansion, and were centred on the entrance pupil (5 mm). The participants included 12 young progressing myopes, 13 young stable myopes and 15 young age-matched emmetropes. Results For all subjects considered together there were significant changes in some of the aberrations terms across the day, such as spherical aberration ( ) and vertical coma ( ) (repeated measures ANOVA, p<0.05). The magnitude of positive spherical aberration ( ) was significantly lower in the progressing myope group than that of the stable myopes (p=0.04) and emmetrope group (p=0.02). There were also significant interactions between refractive group and time of day for with/against-the-rule astigmatism ( ). Significantly lower 4th order RMS of ocular wavefront aberrations were found in the progressing myope group compared with the stable myopes and emmetropes (p<0.01). Conclusions These differences and variations in the corneal and total aberrations may have significance for our understanding of refractive error development and for clinical applications requiring accurate wavefront measurements.
Resumo:
A, dry, non-hydrostatic sub-cloud model is used to simulate an isolated stationary downburst wind event to study the influence topographic features have on the near-ground wind structure of these storms. It was generally found that storm maximum wind speeds could be increased by up to 30% because of the presence of a topographic feature at the location of maximum wind speeds. Comparing predicted velocity profile amplification with that of a steady flow impinging jet, similar results were found despite the simplifications made in the impinging jet model. Comparison of these amplification profiles with those found in the simulated boundary layer winds reveal reductions of up to 30% in the downburst cases. Downburst and boundary layer amplification profiles were shown to become more similar as the topographic feature height was reduced with respect to the outflow depth.
Resumo:
A non-translating, long duration thunderstorm downburst has been simulated experimentally and numerically by modelling a spatially stationary steady flow impinging air jet. Velocity profiles were shown to compare well with an upper-bound of velocity measurements reported for full-scale microbursts. Velocity speed-up over a range of topographic features in simulated downburst flow was also tested with comparisons made to previous work in a similar flow, and also boundary layer wind tunnel experiments. It was found that the amplification measured above the crest of topographic features in simulated downburst flow was up to 35% less than that observed in boundary layer flow for all shapes tested. From the computational standpoint we conclude that the Shear Stress Transport (SST) model performs the best from amongst a range of eddy-viscosity and second moment closures tested for modelling the impinging jet flow.
Resumo:
The results of numerical simulations of nanometer precision distributions of microscopic ion fluxes in ion-assisted etching of nanoscale features on the surfaces of dielectric materials using a self-assembled monolayer of spherical nanoparticles as a mask are presented. It is shown that the ion fluxes to the substrate and nanosphere surfaces can be effectively controlled by the plasma parameters and the external bias applied to the substrate. By proper adjustment of these parameters, the ion flux can be focused onto the areas uncovered by the nanospheres. Under certain conditions, the ion flux distributions feature sophisticated hexagonal patterns, which may lead to very different nanofeature etching profiles. The results presented are generic and suggest viable ways to overcome some of the limitations of the existing plasma-assisted nanolithography.