893 resultados para THREADING DISLOCATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the growth of crack-free blue and greenemitting LED structures grown on 2-inch and 6-inch Si(111) substrates by metalorganic vapour phase epitaxy (MOVPE), using AlN nucleation layers and AlGaN buffer layers for stress management. LED device performance and its dependence on threading dislocation (TD) density and emission wavelength were studied. Despite the inherently low light extraction efficiency, an output power of 1.2 mW at 50 mA was measured from a 500 μm square planar device, emitting at 455 nm. The light output decreases dramatically as the emission wavelength increases from 455 nm to 510 nm. For LED devices emitting at similar wavelength, the light output was more than doubled when the TD density was reduced from 5×1 09 cm-2 to 2×109 cm-2. Our results clearly show that high TD density is detrimental to the overall light output, highlighting the need for further TD reduction for structures grown on Si. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a technique based on wet chemical etching that enables quick and accurate evaluation of edge- and screw/mixed-type threading dislocations (TDs) in GaN. Large and small etch pits are formed by phosphoric acid on the etched surfaces. The large etch pits are attributed to screw/mixed TDs and the small ones to edge TDs, according to their locations on the surface and Burgers vectors of TDs. Additionally, the origin of small etch pits is confirmed by a transmission electron microscopy. The difference in the size of etch pits is discussed in view of their origin and merging. Overetching at elevated temperatures or for a long time may result in merging of individual etch pits and underestimating of the density of TDs. Wet chemical etching has also been proved efficient in revealing the distribution of TDs in epitaxial lateral overgrowth GaN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ge layer with a pitting surface can be obtained when the growth temperature is lowered to 290 degrees C. On the low temperature Ge buffer layer with pits, high quality Ge layer was grown at 600 degrees C with a threading dislocation density of similar to 1x10(5)cm(-2). According to channeling and random Rutherford backscattering spectrometry spectra, a chi(min) value of 10% and 3.9% was found, respectively, at the Ge/Si interface and immediately under the surface peak. The root-mean-square surface roughness of Ge film was 0.33nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-sided flux decoration experiments indicate that threading dislocation lines (TDLs), which cross the entire film, are sometimes trapped in metastable states. We calculate the elastic energy associated with the meanderings of a TDL. The TDL behaves as an anisotropic and dispersive string with thermal fluctuations largely along its Burgers vector. These fluctuations also modify the structure factor of the vortex solid. Both effects can, in principle, be used to estimate the elastic moduli of the material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents models to describe the dislocation dynamics of strain relaxation in an epitaxial uniform layer, epitaxial multilayers and graded composition buffers. A set of new evolution equations for nucleation rate and annihilation rate of threading dislocations is developed. The dislocation interactions are incorporated into the kinetics process by introducing a resistance term, which depends only on plastic strain. Both threading dislocation nucleation and threading dislocation annihilation are characterized. The new evolution equations combined with other evolution equations for the plastic strain rate, the mean velocity and the dislocation density rate of the threading dislocations are tested on GexSi1-x/Si(100) heterostructures, including epitaxial multilayers and graded composition buffers. It is shown that the evolution equations successfully predict a wide range of experimental results of strain relaxation and threading dislocation evolution in the materials system. Meanwhile, the simulation results clearly signify that the threading dislocation annihilation plays a vital role in the reduction of threading dislocation density.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, recent progresses in optical analysis of dislocation-related physical properties in GaN-based epilayers are surveyed with a brief review. The influence of dislocations on both near-band edge emission and yellow luminescence (YL) is examined either in a statistical way as a function of dislocation density or focused on individual dislocation lines with a high spatial resolution. Threading dislocations may introduce non-radiative recombination centers and enhance YL, but their effects are affected by the structural and chemical environment. The minority carrier diffusion length may be dependent on either dislocation density or impurity doping as confirmed by the result of photovoltaic spectra. The in situ optical monitoring of the strain evolution process is employed during GaN heteroepitaxy using an AIN interlayer. A typical transition of strain from compression to tension is observed and its correlation with the reduction and inclination of threading dislocation lines is revealed. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a low-temperature (LT) growth technique. Even with Ge fraction x upto 90%, the total thickness of fully relaxed GexSi1-x buffers can he reduced to 1.7 mu m with dislocation density lower than 5 x 10(6) cm(-2). The surface roughness is no more than 6 nm. The strain relaxation is quite inhomogeneous From the beginning. Stacking faults generate and form the mismatch dislocations in the interface of GeSi/LT-Si. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a low-temperature (LT) growth technique. Even with Ge fraction x upto 90%, the total thickness of fully relaxed GexSi1-x buffers can he reduced to 1.7 mu m with dislocation density lower than 5 x 10(6) cm(-2). The surface roughness is no more than 6 nm. The strain relaxation is quite inhomogeneous From the beginning. Stacking faults generate and form the mismatch dislocations in the interface of GeSi/LT-Si. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth techniques which have enabled the realization of InGaN-based multi-quantum-well (MQW) structures with high internal quantum efficiencies (IQE) on 150mm (6-in.) silicon substrates are reviewed. InGaN/GaN MQWs are deposited onto GaN templates on large-area (111) silicon substrates, using AlGaN strain-mediating interlayers to inhibit thermal-induced cracking and wafer-bowing, and using a SiN x interlayer to reduce threading dislocation densities in the active region of the MQW structure. MQWs with high IQE approaching 60% have been demonstrated. Atomic resolution electron microscopy and EELS analysis have been used to study the nature of the important interface between the Si(111) substrate and the AlN nucleation layer. We demonstrate an amorphous SiN x interlayer at the interface about 2nm wide, which does not, however, prevent good epitaxy of the AlN on the Si(111) substrate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports an extensive analysis of the defect-related localized emission processes occurring in InGaN/GaN-based light-emitting diodes (LEDs) at low reverse- and forward-bias conditions. The analysis is based on combined electrical characterization and spectrally and spatially resolved electroluminescence (EL) measurements. Results of this analysis show that: (i) under reverse bias, LEDs can emit a weak luminescence signal, which is directly proportional to the injected reverse current. Reverse-bias emission is localized in submicrometer-size spots; the intensity of the signal is strongly correlated to the threading dislocation (TD) density, since TDs are preferential paths for leakage current conduction. (ii) Under low forward-bias conditions, the intensity of the EL signal is not uniform over the device area. Spectrally resolved EL analysis of green LEDs identifies the presence of localized spots emitting at 600 nm (i.e., in the yellow spectral region), whose origin is ascribed to localized tunneling occurring between the quantum wells and the barrier layers of the diodes, with subsequent defect-assisted radiative recombination. The role of defects in determining yellow luminescence is confirmed by the high activation energy of the thermal quenching of yellow emission (Ea =0.64&eV). © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two solar cells based on an InGaN/GaN p-i-n hetero-junction, but having different dislocation densities, were fabricated and characterized. The structures were grown on c-plane (0001) GaN-on-sapphire templates with different threading dislocation (TD) densities of 5×108 and 5×109 cm-2. Structural characterization revealed the presence of V-defects in the InGaN epilayer. Since each V-defect was associated with a TD, the structural as well as the optical properties worsened with a higher TD density in the GaN/sapphire template. It was also found that additional dislocations were generated in the p-GaN layer over the V-defects in the InGaN layer. Because of its superior structural quality, the peak external quantum efficiency (EQE) of the low TD density sample was three times higher than that of the high TD density sample. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of large size Si substrates for epitaxy of nitride light emitting diode (LED) structures has attracted great interest because Si wafers are readily available in large diameter at low cost. In addition, such wafers are compatible with existing processing lines for the 6-inch and larger wafer sizes commonly used in the electronics industry. With the development of various methods to avoid wafer cracking and reduce the defect density, the performance of GaN-based LED and electronic devices has been greatly improved. In this paper, we review our methods of growing crack-free InGaN-GaN multiple quantum well (MQW) LED structures of high crystalline quality on Si(111) substrates. The performance of processed LED devices and its dependence on the threading dislocation density were studied. Full wafer-level LED processing using a conventional 6-inch III-V processing line is also presented, demonstrating the great advantage of using large-size Si substrates for mass production of GaN LED devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.