932 resultados para THERMAL HEAT REQUIREMENT
Resumo:
Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the 'Niagara Rosada' cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, So Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates.
Resumo:
The investigation is focused on the wear behaviour at elevated test temperature of composite Ni–P/SiC deposit, with varying concentration of the reinforcing SiC particles. The phase evolution measured by X-ray diffraction suggests slight crystallisation during wear testing at 200 °C. In coating without reinforcing particles, adhesive wear is accompanied by microcracks. The thermal heat generated and the cyclic loading could have induced sub-surface microcracks. Owing to the effective matrix-ceramics system in composite coatings, fine grooves, abrasive polishing and uniform wearing are observed. Reinforcing particles in the matrix hinder microcrack formation and significantly reduce the wear rate. Triboxidation is confirmed from energy dispersive X-ray spectrometry.
Resumo:
Esta pesquisa foi conduzida com o objetivo de avaliar diferentes tipos de coberturas em instalações para aves, por meio do Índice de Temperatura de Globo Negro e Umidade (ITGU), Carga Térmica de Radiação (CTR) e Entalpia (H). O experimento foi conduzido na Universidade Estadual de Goiás, entre os meses de abril e maio de 2011, sendo composto por cinco tratamentos (coberturas): CA -Telha de cimento-amianto; BA -Telha de bambu; BAP -Telha de bambu pintada de branco; FB -Telha de fibra vegetal e betume; FBP -Telha de fibra vegetal e betume pintada de branco, com 15 repetições, sendo as repetições os dias de medição. Dentre os horários estudados, o considerado menos confortável foi às 14h, sendo que a cobertura de fibra vegetal e betume foi a que apresentou maior valor de ITGU (84,1) quando comparada às demais coberturas, caracterizando uma situação de menor conforto térmico, não sendo observada diferença para CTR e H entre os tratamentos na região estudada.
Resumo:
An 18-year time series of daily sea surface temperature of Gulf of Cadiz and an 18-month time series of temperature collected in the vicinity of the Guadalquivir estuary mouth have been analyzed to investigate the heat exchange between the estuary and the adjacent continental shelf. The first time identifies a continental shelf area where seasonal thermal oscillation signal (amplitudes and phase) changes abruptly. In order to explain this anomaly, the second data set allows a description of thermal fluctuations in a wide range of frequencies and an estimation of the upstream heat budget of the Guadalquivir estuary. Results show that high frequency thermal signal, diurnal and semidiurnal, and water flux signal through Guadalquivir mouth, mainly semidiurnal, apparently interact randomly to give a small exchange of thermal energy at high frequency. There is no trace, at the estuary's mouth, of daily heat exchanges with intertidal mudflats probably because it tends to cancel on daily time scales. Results also show that fluctuations of estimated air-sea fluxes force fluctuations of temperature in a quite homogeneous estuarine, with a delay of 20 days. The along-channel thermal energy gradient reaches magnitudes of 300-400 J m-4 near the mouth during the summer and winter and drives the estuary-shelf exchange of thermal energy at seasonal scale. Particularly, the thermal heat imported by the estuary from the shelf area during late fall-winter-early spring of 2008/2009 is balanced by the thermal heat that the estuary exports to the shelf area during late spring-summer of 2008. In summary, Guadalquivir river removes/imports excess of thermal energy towards/from the continental shelf seasonally, as a mechanism to accommodate excess of heat from one side respect to the other side.
Resumo:
Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.
Resumo:
In dieser Arbeit wurde ein gemischt-ganzzahliges lineares Einsatzoptimierungsmodell für Kraftwerke und Speicher aufgebaut und für die Untersuchung der Energieversorgung Deutschlands im Jahre 2050 gemäß den Leitstudie-Szenarien 2050 A und 2050 C ([Nitsch und Andere, 2012]) verwendet, in denen erneuerbare Energien einen Anteil von über 85 % an der Stromerzeugung haben und die Wind- und Solarenergie starke Schwankungen der durch steuerbare Kraftwerke und Speicher zu deckenden residualen Stromnachfrage (Residuallast) verursachen. In Szenario 2050 A sind 67 TWh Wasserstoff, die elektrolytisch aus erneuerbarem Strom zu erzeugen sind, für den Verkehr vorgesehen. In Szenario 2050 C ist kein Wasserstoff für den Verkehr vorgesehen und die effizientere Elektromobilität hat einen Anteil von 100% am Individualverkehr. Daher wird weniger erneuerbarer Strom zur Erreichung desselben erneuerbaren Anteils im Verkehrssektor benötigt. Da desweiteren Elektrofahrzeuge Lastmanagementpotentiale bieten, weisen die Residuallasten der Szenarien eine unterschiedliche zeitliche Charakteristik und Jahressumme auf. Der Schwerpunkt der Betrachtung lag auf der Ermittlung der Auslastung und Fahrweise des in den Szenarien unterstellten ’Kraftwerks’-parks bestehend aus Kraftwerken zur reinen Stromerzeugung, Kraft-Wärme-Kopplungskraftwerken, die mit Wärmespeichern, elektrischen Heizstäben und Gas-Backupkesseln ausgestattet sind, Stromspeichern und Wärmepumpen, die durch Wärmespeicher zum Lastmanagment eingesetzt werden können. Der Fahrplan dieser Komponenten wurde auf minimale variable Gesamtkosten der Strom- und Wärmeerzeugung über einen Planungshorizont von jeweils vier Tagen hin optimiert. Das Optimierungsproblem wurde mit dem linearen Branch-and-Cut-Solver der software CPLEX gelöst. Mittels sogenannter rollierender Planung wurde durch Zusammensetzen der Planungsergebnisse für überlappende Planungsperioden der Kraftwerks- und Speichereinsatz für die kompletten Szenariojahre erhalten. Es wurde gezeigt, dass der KWK-Anteil an der Wärmelastdeckung gering ist. Dies wurde begründet durch die zeitliche Struktur der Stromresiduallast, die wärmeseitige Dimensionierung der Anlagen und die Tatsache, dass nur eine kurzfristige Speicherung von Wärme vorgesehen war. Die wärmeseitige Dimensionierung der KWK stellte eine Begrenzung des Deckungsanteils dar, da im Winter bei hoher Stromresiduallast nur wenig freie Leistung zur Beladung der Speicher zur Verfügung stand. In den Berechnungen für das Szenario 2050 A und C lag der mittlere Deckungsanteil der KWK an der Wärmenachfrage von ca. 100 TWh_th bei 40 bzw. 60 %, obwohl die Auslegung der KWK einen theoretischen Anteil von über 97 % an der Wärmelastdeckung erlaubt hätte, gäbe es die Beschränkungen durch die Stromseite nicht. Desweiteren wurde die CO2-Vermeidungswirkung der KWK-Wärmespeicher und des Lastmanagements mit Wärmepumpen untersucht. In Szenario 2050 A ergab sich keine signifikante CO2-Vermeidungswirkung der KWK-Wärmespeicher, in Szenario 2050 C hingegen ergab sich eine geringe aber signifikante CO2-Einsparung in Höhe von 1,6 % der Gesamtemissionen der Stromerzeugung und KWK-gebundenen Wärmeversorgung. Das Lastmanagement mit Wärmepumpen vermied Emissionen von 110 Tausend Tonnen CO2 (0,4 % der Gesamtemissionen) in Szenario A und 213 Tausend Tonnen in Szenario C (0,8 % der Gesamtemissionen). Es wurden darüber hinaus Betrachtungen zur Konkurrenz zwischen solarthermischer Nahwärme und KWK bei Einspeisung in dieselben Wärmenetze vorgenommen. Eine weitere Einschränkung der KWK-Erzeugung durch den Einspeisevorrang der Solarthermie wurde festgestellt. Ferner wurde eine untere Grenze von 6,5 bzw. 8,8 TWh_th für die in den Szenarien mindestens benötigte Wasserstoff-Speicherkapazität ermittelt. Die Ergebnisse dieser Arbeit legen nahe, das technisch-ökonomische Potential von Langzeitwärmespeichern für eine bessere Integration von KWK ins System zu ermitteln bzw. generell nach geeigneteren Wärmesektorszenarien zu suchen, da deutlich wurde, dass für die öffentliche Wärmeversorgung die KWK in Kombination mit Kurzzeitwärmespeicherung, Gaskesseln und elektrischen Heizern keine sehr effektive CO2 -Reduktion in den Szenarien erreicht. Es sollte dabei z.B. untersucht werden, ob ein multivalentes System aus KWK, Wärmespeichern und Wärmepumpen eine ökonomisch darstellbare Alternative sein könnte und im Anschluss eine Betrachtung der optimalen Anteile von KWK, Wärmepumpen und Solarthermie im Wärmemarkt vorgenommen werden.
Resumo:
The use of heat in parallel with relative low temperatures and applied to several areas of the industry is essential for the main manufacturing processes, like drying, dehydrating, concentration, annealing, production of chemical reactions, and microbiological sterilization. Without neither the heat nor the coming of a great quantity of thermal heat, with high quality, there would not be the “modern society”, with its high standards of living plus its high consumption levels; from services to goods in general. Within an almost absolute way, the heat flows are obtained from vapor systems. Thus, in this work we are going into the operation of a vapor system, composed of two firetube boilers dimensioned to supply vapor for three processes. However, with the transfer of one of the processes to another plant, the system got over-dimensioned. But, taking advantage of this scenario, the two boilers were used to supply vapor to further processes, causing their intermittent usage. Moreover, the operational alternative adopted by the maintenance engineering of the plant for a creating a solution has been presented; both the positive points and negative ones were disclosed, likewise the possibility of improvement points
Resumo:
Due to the large use of steel in several processes around the world, there is the increasingly concern to find new materials and/or optimization and improvement of the processes, as the need to reduce the cost and a productivity increase in the primary industry, such as the siderurgy. The rolling is the most used mechanical process in the world and therefore is required the development of new tools in high volume and with optimum characteristics to support the market demand. Forged rolls used are for rolling. These rolls have heat treatment that has the purpose to achieve the appropriated mechanical properties to support the variables of the rolling process. The objective of this work is to analyze the hardness profile and the microstructure a tool steel similar to AISI A2, forged in an opened die process and submitted to heat treatment with water-cooling. The results allowed plotting a hardness profile and performing a microstructure analysis, and whereby to confirm that the heat treatment is not a quenching, but it is a material beneficiation by the hardening of superficial layer, since there is no martensitic microstructure. Therefore, this paper provides the support to future studies about the possibility to perform enhancements in this thermal heat made in the rolls produced at Gerdau Plant in Pindamonhangaba
Resumo:
Due to the large use of steel in several processes around the world, there is the increasingly concern to find new materials and/or optimization and improvement of the processes, as the need to reduce the cost and a productivity increase in the primary industry, such as the siderurgy. The rolling is the most used mechanical process in the world and therefore is required the development of new tools in high volume and with optimum characteristics to support the market demand. Forged rolls used are for rolling. These rolls have heat treatment that has the purpose to achieve the appropriated mechanical properties to support the variables of the rolling process. The objective of this work is to analyze the hardness profile and the microstructure a tool steel similar to AISI A2, forged in an opened die process and submitted to heat treatment with water-cooling. The results allowed plotting a hardness profile and performing a microstructure analysis, and whereby to confirm that the heat treatment is not a quenching, but it is a material beneficiation by the hardening of superficial layer, since there is no martensitic microstructure. Therefore, this paper provides the support to future studies about the possibility to perform enhancements in this thermal heat made in the rolls produced at Gerdau Plant in Pindamonhangaba
Resumo:
Broccoli is a vegetable crop of increasing importance in Australia, particularly in south-east Queensland and farmers need to maintain a regular supply of good quality broccoli to meet the expanding market. A predictive model of ontogeny, incorporating climatic data including frost risk, would enable farmers to predict harvest maturity date and select appropriate cultivar – sowing date combinations. To develop procedures for predicting ontogeny, yield and quality, field studies using three cultivars, ‘Fiesta’, ‘Greenbelt’ and ‘Marathon’, were sown on eight dates from 11 March to 22 May 1997, and grown under natural and extended (16 h) photoperiods at the University of Queensland, Gatton Campus. Cultivar, rather than the environment, mainly determined head quality attributes of head shape and branching angle. Yield and quality were not influenced by photoperiod. A better understanding of genotype and environmental interactions will help farmers optimise yield and quality, by matching cultivars with time of sowing. The estimated base and optimum temperature for broccoli development were 0°C and 20 °C, respectively, and were consistent across cultivars, but thermal time requirements for phenological intervals were cultivar specific. Differences in thermal time requirement from floral initiation to harvest maturity between cultivars were small and of little importance, but differences in thermal time requirement from emergence to floral initiation were large. Sensitivity to photoperiod and solar radiation was low in the three cultivars used. This research has produced models to assist broccoli farmers in crop scheduling and cultivar selection in south-east Queensland.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2015.
Resumo:
In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.
Resumo:
A generalized Lévêque solution is presented for the conjugate fluid–fluid problem that arises in the thermal entrance region of laminar counterflow heat exchangers. The analysis, carried out for constant property fluids, assumes that the Prandtl and Peclet numbers are both large compared to unity, and neglects axial conduction both in the fluids and in the plate, assumed to be thermally thin. Under these conditions, the thermal entrance region admits an asymptotic self-similar description where the temperature varies as a power ϳ of the axial distance, with the particularity that the self-similarity exponent must be determined as an eigenvalue by solving a transcendental equation arising from the requirement of continuity of heat fluxes at the heat conducting wall. Specifically, the analysis reveals that j depends only on the lumped parameter ƙ = (A2/A1)1/3 (α1/α2)1/3(k2/k1), defined in terms of the ratios of the wall velocity gradients, A, thermal diffusivities, α i, and thermal conductivities,k i, of the fluids entering, 1, and exiting, 2, the heat exchanger. Moreover, it is shown that for large (small) values of K solution reduces to the classical first (second) Lévêque solution. Closed-form analytical expressions for the asymptotic temperature distributions and local heat-transfer rate in the thermal entrance region are given and compared with numerical results in the counterflow parallel-plate configuration, showing very good agreement in all cases.
Resumo:
The heat transfer through the attics of buildings under realistic thermal forcing has been considered in this study. A periodic temperature boundary condition is applied on the sloping walls of the attic to show the basic flow features in the attic space over diurnal cycles. The numerical results reveal that, during the daytime heating stage, the flow in the attic space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. A symmetrical solution is seen for relatively low Rayleigh numbers. However, as the Ra gradually increases, a transition occurs at a critical value of Ra. Above this critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the night-time. It is also found that the calculated heat transfer rate at the night-time cooling stage is much higher than that during the daytime heating stage.
Resumo:
Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.