986 resultados para TAP WATER


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactor was used to study the treatment of acid mine drainage through the biological reduction of sulfate. The reactor was fed with acid mine drainage collected at the Osamu Utsumi uranium mine (Caldas, MG, Brazil) and supplemented with ethanol as an external carbon source. Anaerobic granular sludge originating from a reactor treating poultry slaughterhouse wastewater was used as the inoculum. The reactor's performance was studied according to variations in the chemical oxygen demand (COD)/SO42- ratio, influent dilution and liquid-phase recirculation. The digestion of a dilution of the acid mine drainage resulted in a 46.3% removal of the sulfate and an increase in the effluent pH (COD/SO42- = 0.67). An increase in the COD/SO42- ratio to 1.0 resulted in an 85.6% sulfate reduction. The reduction of sulfate through complete oxidation of the ethanol was the predominant path in the reactor, although the removal of COD was not greater than 68% in any of the operational stages. The replenishment of the liquid phase with tap water positively affected the reactor, whereas the recirculation of treated effluent caused disequilibrium and decreased efficiency. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drinking water-related exposures within populations living in the United States-Mexico border region, particularly among Hispanics, is an area that is largely unknown. Specifically, perceptions that may affect water source selection is an issue that has not been fully addressed. This study evaluates drinking water quality perceptions in a mostly Hispanic community living along the United States-Mexico border, a community also facing water scarcity issues. Using a survey that was administered during two seasons (winter and summer), data were collected from a total of 608 participants, of which 303 were living in the United States and 305 in Mexico. A (random) convenience sampling technique was used to select households and those interviewed were over 18 years of age. Statistically significant differences were observed involving country of residence (p=0.002). Specifically, those living in Mexico reported a higher use of bottled water than those living in the United States. Perception factors, especially taste, were cited as main reasons for not selecting unfiltered tap water as a primary drinking water source. Understanding what influences drinking water source preference can aid in the development of risk communication strategies regarding water quality. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Herbicides are used to control the growth of weeds along highways, power lines, and many other urban locations. Exposure to herbicides has been linked to adverse health outcomes. This study was initiated to pretest for the presence of herbicides in multiple water sources near intersections in a corridor in the Northwest Harris County (specifically in the Highway 6/FM 1960, North Freeway 45, US 290 and S 99 corridor). Roadside water and tap water samples were collected and analyzed for herbicides using the established Environmental Protection Agency (EPA) Method 515.4: "Determination of Chlorinated Acids in Drinking Water by Liquid-Liquid Micro-extraction, Derivatization, and Fast Gas Chromatography with Electron Capture Detection." A standard operating procedure (adapted from the US EPA Method 515.4) was developed for subsequent, larger studies of environmental fate of herbicides and non-occupational exposure risks. Preliminary testing of 16 water samples was performed to pretest the existence of trace herbicides; all concentrations that were greater than the minimum reporting limits of each analyte are reported with a 99 percent confidence. This study failed to find concentrations above the limits of detection of the method in any of the samples collected on June 15, 2008. However, this does not indicate that the waters around the NW Harris County are free of herbicides and metabolites. A larger and repeated sampling in the region would be necessary to make that claim. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid–liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L−1 was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L−1, which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L−1 and 1 µg L−1, respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L−1) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of solutions that prevent dehydration or promote adequate re-hydration play a vital role in preventing fatigue during exercise, however, the methods commonly used to assess the hydration ability of such solutions are invasive and often assess the components of absorption separately. This paper describes using a non-invasive deuterium tracer technique that assesses gastric emptying and intestinal absorption simultaneously to evaluate the uptake of water during rest and exercise. The kinetics of absorption are further examined by mathematical modelling of the data generated. For the rest group, 0.05 g/kg of body weight of deuterium, contained in gelatine capsules, was ingested with ordinary tap water and saliva samples were collected every 5 min for one hour while the subject remained seated. The deuterium was administered as above for the exercise group but sample collection was during one hour of exercise on a treadmill at 55% of the subject's maximum heart rate. The enrichment data for each subject were mathematically modelled and the parameters obtained were compared across groups using an independent samples t-test. Compared with the rest condition, the exercise group showed delayed absorption of water as indicated by significant differences for the modelling parameters t(2), t(1/2), maximum absorption rate and solution absorption amount at t(1). Labelling with a deuterium tracer is a good measure of the relative rate ingested fluids are absorbed by the body. Mathematical modelling of the data generates rates of maximum absorption and allows calculation of the percentage of the solution that is absorbed at any given time during the testing period. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Australian freshwaters, Anabaena circinalis, Microcystis spp. and Cylindrospermopsis raciborskii are the dominant toxic cyanobacteria. Many of these Surface waters are used as drinking water resources. Therefore, the National Health and Medical Research Council of Australia set a guideline for MC-LR toxicity equivalents of 1.3 mug/l drinking, water. However, due to lack of adequate data, no guideline values for paralytic shellfish poisons (PSPs) (e.g. saxitoxins) or cylindrospermopsin (CYN) have been set. In this spot check. the concentration of microcystins (MCs), PSPs and CYN were determined by ADDA-ELISA, cPPA, HPLC-DAD and/or HPLC-MS/MS, respectively, in two water treatment plants in Queensland/Australia and compared to phytoplankton data collected by Queensland Health, Brisbane. Depending on the predominant cyanobacterial species in a bloom, concentrations of up to 8.0, 17.0 and 1.3 mug/l were found for MCs, PSPs and CYN, respectively. However, only traces (< 1.0 mug/l) of these toxins were detected in final water (final product of the drinking water treatment plant) and tap water (household sample). Despite the low concentrations of toxins detected in drinking water, a further reduction of cyanobacterial toxins is recommended to guarantee public safety. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diese Arbeit beschäftigt sich mit nicht in Rechnung stellbaren Wasserverlusten in städtischen Versorgungsnetzen in Entwicklungsländern. Es soll das Wissen über diese Verluste erweitert und aufgezeigt werden, ob diese auf ein ökonomisch vertretbares Maß reduziert werden können. Die vorliegende Doktorarbeit untersucht solche unberechneten Wasserverluste und versucht, neben der Quantifizierung von Leckagen auch Entscheidungswerkzeuge für ein verbessertes Management der Versorgungsnetze in Entwicklungsländern zu erarbeiten. Als Fallstudie dient Harare, die Hauptstadt von Simbabwe. Wasserverluste in Verteilungsnetzen sind unvermeidbar, sollten aber auf ein ökonomisch tragbares Niveau reduziert werden, wenn ein nachhaltiger Betrieb erreicht werden soll. Wasserverluste können sowohl durch illegale und ungenehmigte Anschlüsse oder durch Undichtigkeiten im Verteilnetz, als auch durch mangelhafte Mess- und Berechnungssysteme entstehen. Es sind bereits viele Ansätze zur Verringerung von Verlusten in Wasserverteilsystemen bekannt geworden, entsprechend existieren dazu auch zahlreiche Methoden und Werkzeuge. Diese reichen von computergestützten Verfahren über gesetzliche und politische Vorgaben sowie ökonomische Berechnungen bis hin zu Maßnahmen der Modernisierung der Infrastruktur. Der Erfolg dieser Anstrengungen ist abhängig von der Umsetzbarkeit und dem Umfeld, in dem diese Maßnahmen durchgeführt werden. Die Bewertung der Arbeitsgüte einer jeden Wasserversorgungseinheit basiert auf der Effektivität des jeweiligen Verteilungssystems. Leistungs- und Bewertungszahlen sind die meist genutzten Ansätze, um Wasserverteilsysteme und ihre Effizienz einzustufen. Weltweit haben sich zur Bewertung als Indikatoren die finanzielle und die technische Leistungsfähigkeit durchgesetzt. Die eigene Untersuchung zeigt, dass diese Indikatoren in vielen Wasserversorgungssystemen der Entwicklungsländer nicht zur Einführung von Verlust reduzierenden Managementstrategien geführt haben. Viele durchgeführte Studien über die Einführung von Maßnahmen zur Verlustreduzierung beachten nur das gesamte nicht in Rechnung stellbare Wasser, ohne aber den Anteil der Leckagen an der Gesamthöhe zu bestimmen. Damit ist keine Aussage über die tatsächliche Zuordnung der Verluste möglich. Aus diesem Grund ist ein Bewertungsinstrument notwendig, mit dem die Verluste den verschiedenen Ursachen zugeordnet werden können. Ein solches Rechenwerkzeug ist das South African Night Flow Analysis Model (SANFLOW) der südafrikanischen Wasser-Forschungskommission, das Untersuchungen von Wasserdurchfluss und Anlagendruck in einzelnen Verteilbezirken ermöglicht. In der vorliegenden Arbeit konnte nachgewiesen werden, dass das SANFLOW-Modell gut zur Bestimmung des Leckageanteiles verwendet werden kann. Daraus kann gefolgert werden, dass dieses Modell ein geeignetes und gut anpassbares Analysewerkzeug für Entwicklungsländer ist. Solche computergestützte Berechnungsansätze können zur Bestimmung von Leckagen in Wasserverteilungsnetzen eingesetzt werden. Eine weitere Möglichkeit ist der Einsatz von Künstlichen Neuronalen Netzen (Artificial Neural Network – ANN), die trainiert und dann zur Vorhersage der dynamischen Verhältnisse in Wasserversorgungssystemen genutzt werden können. Diese Werte können mit der Wassernachfrage eines definierten Bezirks verglichen werden. Zur Untersuchung wurde ein Mehrschichtiges Künstliches Neuronales Netz mit Fehlerrückführung zur Modellierung des Wasserflusses in einem überwachten Abschnitt eingesetzt. Zur Bestimmung des Wasserbedarfes wurde ein MATLAB Algorithmus entwickelt. Aus der Differenz der aktuellen und des simulierten Wassernachfrage konnte die Leckagerate des Wasserversorgungssystems ermittelt werden. Es konnte gezeigt werden, dass mit dem angelernten Neuronalen Netzwerk eine Vorhersage des Wasserflusses mit einer Genauigkeit von 99% möglich ist. Daraus lässt sich die Eignung von ANNs als flexibler und wirkungsvoller Ansatz zur Leckagedetektion in der Wasserversorgung ableiten. Die Untersuchung zeigte weiterhin, dass im Versorgungsnetz von Harare 36 % des eingespeisten Wassers verloren geht. Davon wiederum sind 33 % auf Leckagen zurückzuführen. Umgerechnet bedeutet dies einen finanziellen Verlust von monatlich 1 Millionen Dollar, was 20 % der Gesamteinnahmen der Stadt entspricht. Der Stadtverwaltung von Harare wird daher empfohlen, aktiv an der Beseitigung der Leckagen zu arbeiten, da diese hohen Verluste den Versorgungsbetrieb negativ beeinflussen. Abschließend wird in der Arbeit ein integriertes Leckage-Managementsystem vorgeschlagen, das den Wasserversorgern eine Entscheidungshilfe bei zu ergreifenden Maßnahmen zur Instandhaltung des Verteilnetzes geben soll.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bioretention is a common stormwater control measure (SCM). While compost, combined with other bioretention soil media (BSM), has the potential for increased pollutant and water uptake and storage, it also may leach harmful nutrients. Limited information is available on the use of compost in SCMs. Therefore, this project seeks to analyze the impacts of the addition of biosolids-derived compost to bioretention. To accomplish this, bioretention mesocosm column studies were conducted to determine the leaching effects of 15%, 30%, and 30% tap water-washed compost, mixed with standard BSM. Synthetic storm runoff was applied to the columns and the effluent was analyzed for total nitrogen (N), phosphorus (P), and their speciation. All three columns leached N and P with maximum total N concentrations of 2,200, 2,100, and 300 mg-N/L and total P concentrations of 12, 4.9, and 4.6 mg-P/L for the 30%, 15%, and 30% washed mesocosms, respectively. Therefore, based on this study, it is not recommended that biosolids-derived compost be added to bioretention media.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The preparation of a certified reference material of polar pesticides in freeze-dried water is described. The pesticides selected were atrazine, simazine, carbaryl, propanil, linuron, fenamiphos and permethrin which were added to 6000 litres of tap water at 50–80 μg · L–1 (200–320 μg · L–1 for permethrin) level in presence of NaCl (2.5 g · L–1) prior lyophilization. After the freeze-drying process the residue was rehomogenized, filled into amber glass bottles and stored at –20 °C, +4 °C and +20 °C. All pesticides were determined by HPLC/diode array detector, except permethrin which was determined by GC/ECD. The results obtained for atrazine, simazine, carbaryl, propanil, linuron and fenamiphos showed no within- or between-bottle inhomogeneity, however the material was non-homogeneous for permethrin and therefore this was withdrawn from further studies. With respect to the stability for over one year, all pesticides were stable at –20 °C. At +4 °C all pesticides were stable for at least 9 months and at +20 °C the stability was demonstrated only during the first month of storage. The content (mass fractions) of atrazine, simazine, carbaryl, propanil and linuron in freeze-dried water (CRM 606) was certified by an interlaboratory testing and a certification campaign.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor (L.) Moench) is the world’s fifth major cereal crop and holds importance as a construction material, food and fodder source. More recently, the potential of this plant as a biofuel source has been noted. Despite its agronomic importance, the use of sorghum production is being constrained by both biotic and abiotic factors. These challenges could be addressed by the use of genetic engineering strategies to complement conventional breeding techniques. However, sorghum is one of the most recalcitrant crops for genetic modification with the lack of an efficient tissue culture system being amongst the chief reasons. Therefore, the aim of this study was to develop an efficient tissue culture system for establishing regenerable embryogenic cell lines, micropropagation and acclimatisation for Sorghum bicolor and use this to optimise parameters for genetic transformation via Agrobacterium-mediated transformation and microprojectile bombardment. Using five different sorghum cultivars, SA281, 296B, SC49, Wray and Rio, numerous parameters were investigated in an attempt to establish an efficient and reproducible tissue culture and transformation system. Using immature embryos (IEs) as explants, regenerable embryogenic cell lines (ECLs) could only be established from cultivars SA281 and 296B. Large amounts of phenolics were produced from IEs of cultivars, SC49, Wary and Rio, and these compounds severely hindered callus formation and development. Cultivar SA281 also produced phenolics during regeneration. Attempts to suppress the production of these compounds in cultivars SA281 and SC49 using activated charcoal, PVP, ascorbic acid, citric acid and liquid filter paper bridge methods were either ineffective or had a detrimental effect on embryogenic callus formation, development and regeneration. Immature embryos sourced during summer were found to be far more responsive in vitro than those sourced during winter. In an attempt to overcome this problem, IEs were sourced from sorghum grown under summer conditions in either a temperature controlled glasshouse or a growth chamber. However, the performance of these explants was still inferior to that of natural summer-sourced explants. Leaf whorls, mature embryos, shoot tips and leaf primordia were found to be unsuitable as explants for establishing ECLs in sorghum cultivars SA281 and 296B. Using the florets of immature inflorescences (IFs) as explants, however, ECLs were established and regenerated for these cultivars, as well as for cultivar Tx430, using callus induction media, SCIM, and regeneration media, VWRM. The best in vitro responses, from the largest possible sized IFs, were obtained using plants at the FL-2 stage (where the last fully opened leaf was two leaves away from the flag leaf). Immature inflorescences could be stored at 25oC for up to three days without affecting their in vitro responses. Compared to IEs, the IFs were more robust in tissue culture and showed responses which were season and growth condition independent. A micropropagation protocol for sorghum was developed in this study. The optimum plant growth regulator (PGR) combination for the micropropagation of in vitro regenerated plantlets was found to be 1.0 mg/L BAP in combination with 0.5 mg/L NAA. With this protocol, cultivars 296B and SA281 produced an average of 57 and 13 off-shoots per plantlet, respectively. The plantlets were successfully acclimatised and developed into phenotypically normal plants that set seeds. A simplified acclimatisation protocol for in vitro regenerated plantlets was also developed. This protocol involved deflasking in vitro plantlets with at least 2 fully-opened healthy leaves and at least 3 roots longer than 1.5 cm, washing the media from the roots with running tap water, planting in 100 mm pots and placing in plastic trays covered with a clear plastic bag in a plant growth chamber. After seven days, the corners of the plastic cover were opened and the bags were completely removed after 10 days. All plantlets were successfully acclimatised regardless of whether 1:1 perlite:potting mix, potting mix, UC mix or vermiculite were used as potting substrates. Parameters were optimised for Agrobacterium-mediated transformation (AMT) of cultivars SA281, 296B and Tx430. The optimal conditions were the use of Agrobacterium strain LBA4404 at an inoculum density of 0.5 OD600nm, heat shock at 43oC for 3 min, use of the surfactant Pluronic F-68 (0.02% w/v) in the inoculation media with a pH of 5.2 and a 3 day co-cultivation period in dark at 22oC. Using these parameters, high frequencies of transient GFP expression was observed in IEs precultured on callus initiation media for 1-7 days as well as in four weeks old IE- and IF-derived callus. Cultivar SA281 appeared very sensitive to Agrobacterium since all tissue turned necrotic within two weeks post-exposure. For cultivar 296B, GFP expression was observed up to 20 days post co-cultivation but no stably transformed plants were regenerated. Using cultivar Tx430, GFP was expressed for up to 50 days post co-cultivation. Although no stably transformed plants of this cultivar were regenerated, this was most likely due to the use of unsuitable regeneration media. Parameters were optimised for transformation by particle bombardment (PB) of cultivars SA281, 296B and Tx430. The optimal conditions were use of 3-7 days old IEs and 4 weeks old IF callus, 4 hour pre- and post-bombardment osmoticum treatment, use of 0.6 µm gold microparticles, helium pressure of 1500 kPa and target distance of 15 cm. Using these parameters for PB, transient GFP expression was observed for up to 14, 30 and 50 days for cultivars SA281, 296B and Tx430, respectively. Further, the use of PB resulted in less tissue necrosis compared to AMT for the respective cultivars. Despite the presence of transient GFP expression, no stably transformed plants were regenerated. The establishment of regenerable ECLs and the optimization of AMT and PB parameters in this study provides a platform for future efforts to develop an efficient transformation protocol for sorghum. The development of GM sorghum will be an important step towards improving its agronomic properties as well as its exploitation for biofuel production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using our porcine model of deep dermal partial thickness burn injury, various cooling techniques (15 degrees C running water, 2 degrees C running water, ice) of first aid were applied for 20 minutes compared with a control (ambient temperature). The subdermal temperatures were monitored during the treatment and wounds observed and photographed weekly for 6 weeks, observing reepithelialization, wound surface area and cosmetic appearance. Tissue histology and scar tensile strength were examined 6 weeks after burn. The 2 degrees C and ice treatments decreased the subdermal temperature the fastest and lowest, however, generally the 15 and 2 degrees C treated wounds had better outcomes in terms of reepithelialization, scar histology, and scar appearance. These findings provide evidence to support the current first aid guidelines of cold tap water (approximately 15 degrees C) for 20 minutes as being beneficial in helping to heal the burn wound. Colder water at 2 degrees C is also beneficial. Ice should not be used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Throughout history there have been many different and sometimes bizarre treatments prescribed for burns. Unfortunately many of these treatments still persist today, although they often do not have sufficient evidence to support their use. This paper reviews common first aid and pre-hospital treatments for burns (water--cold or warm, ice, oils, powders and natural plant therapies), possible mechanisms whereby they might work and the literature which supports their use. From the published work to date, the current recommendations for the first aid treatment of burn injuries should be to use cold running tap water (between 2 and 15 degrees C) on the burn, not ice or alternative plant therapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes. Results Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption. Conclusions The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At the beginning of 2008, I visited a watershed, located in Karkinatam village in the state of Karnataka, South India, where crops are intensively irrigated using groundwater. The water table had been depleted from a depth of 5 to 50 m in a large part of the area. Presently, 42% of a total of 158 water wells in the watershed are dry. Speaking with the farmers, I have been amazed to learn that they were drilling down to 500 m to tap water. This case is, of course, not isolated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biomass yields of duck week (Lemna minor(L) was monitored in hydroponic media prepared by variously extracting 0.50, 1.00 and 2.00g of dried chicken manure per liter of city water (tap water) supply. The culture media consisting of aqueous extract of the various manure treatments were made up to 12 liters in all cases with tap water as control. Plastic baths of 25 liters capacity with 0.71 super(m2) surface area were used as culture facility. Each bath was stocked at a density of 30g super(m-2) with fresh weed samples (i.e 21.30g/bath). Maximum yields were obtained at all treatment levels and control on day 3 and based on the highest yield of 0.37gm super(-2)d super(-1) (dry matter) obtained at 1.00gL manure treatment which was however not significantly higher (P>0.05) than the 0.36gm super(-2)d super(-1) (dry matter) at 0.05gl super(-1) media manure content, an average manure level of 0.75l super(-1) was selected and used to determine the operational plant density. Thus fresh weights of 30 to 300gm super(-2) was grown in triplicate at 30g intervals for a period of 3 days. A regression equation of Y=2.6720+0.0021x with a corresponding maximum density or operational plant density of 266gm super(-2) and yield of 0.98gm super(-2), d super(-1) (dry matter) were obtained. Further growth trials were carried out at the operational density and manure levels of 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00gl super(-1) media manure concentration giving a significantly higher yield (P<0.05) of 17gm super(-2), d super(-1) (dry matter). This yield was however doubled to between 2.21 and 2.24gm super(-2) d super(-1) (equivalent to 7.96 to 8.06mt.ha-1, Yr-1 dry matter on extrapolation) if 25% and 75% respectively of the total weed cover were harvested daily within the experimental period. The role of some dissolved plant nutrients (DPN) were also discussed