990 resultados para Systèmes differentiels linéaires


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'objectif du présent mémoire vise à présenter des modèles de séries chronologiques multivariés impliquant des vecteurs aléatoires dont chaque composante est non-négative. Nous considérons les modèles vMEM (modèles vectoriels et multiplicatifs avec erreurs non-négatives) présentés par Cipollini, Engle et Gallo (2006) et Cipollini et Gallo (2010). Ces modèles représentent une généralisation au cas multivarié des modèles MEM introduits par Engle (2002). Ces modèles trouvent notamment des applications avec les séries chronologiques financières. Les modèles vMEM permettent de modéliser des séries chronologiques impliquant des volumes d'actif, des durées, des variances conditionnelles, pour ne citer que ces applications. Il est également possible de faire une modélisation conjointe et d'étudier les dynamiques présentes entre les séries chronologiques formant le système étudié. Afin de modéliser des séries chronologiques multivariées à composantes non-négatives, plusieurs spécifications du terme d'erreur vectoriel ont été proposées dans la littérature. Une première approche consiste à considérer l'utilisation de vecteurs aléatoires dont la distribution du terme d'erreur est telle que chaque composante est non-négative. Cependant, trouver une distribution multivariée suffisamment souple définie sur le support positif est plutôt difficile, au moins avec les applications citées précédemment. Comme indiqué par Cipollini, Engle et Gallo (2006), un candidat possible est une distribution gamma multivariée, qui impose cependant des restrictions sévères sur les corrélations contemporaines entre les variables. Compte tenu que les possibilités sont limitées, une approche possible est d'utiliser la théorie des copules. Ainsi, selon cette approche, des distributions marginales (ou marges) peuvent être spécifiées, dont les distributions en cause ont des supports non-négatifs, et une fonction de copule permet de tenir compte de la dépendance entre les composantes. Une technique d'estimation possible est la méthode du maximum de vraisemblance. Une approche alternative est la méthode des moments généralisés (GMM). Cette dernière méthode présente l'avantage d'être semi-paramétrique dans le sens que contrairement à l'approche imposant une loi multivariée, il n'est pas nécessaire de spécifier une distribution multivariée pour le terme d'erreur. De manière générale, l'estimation des modèles vMEM est compliquée. Les algorithmes existants doivent tenir compte du grand nombre de paramètres et de la nature élaborée de la fonction de vraisemblance. Dans le cas de l'estimation par la méthode GMM, le système à résoudre nécessite également l'utilisation de solveurs pour systèmes non-linéaires. Dans ce mémoire, beaucoup d'énergies ont été consacrées à l'élaboration de code informatique (dans le langage R) pour estimer les différents paramètres du modèle. Dans le premier chapitre, nous définissons les processus stationnaires, les processus autorégressifs, les processus autorégressifs conditionnellement hétéroscédastiques (ARCH) et les processus ARCH généralisés (GARCH). Nous présentons aussi les modèles de durées ACD et les modèles MEM. Dans le deuxième chapitre, nous présentons la théorie des copules nécessaire pour notre travail, dans le cadre des modèles vectoriels et multiplicatifs avec erreurs non-négatives vMEM. Nous discutons également des méthodes possibles d'estimation. Dans le troisième chapitre, nous discutons les résultats des simulations pour plusieurs méthodes d'estimation. Dans le dernier chapitre, des applications sur des séries financières sont présentées. Le code R est fourni dans une annexe. Une conclusion complète ce mémoire.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dans cette thèse, nous sommes intéressés par des problèmes de préservation des applications non-linéaires entre deux algèbres de Banach complexes unitaires A et B. En général, ces problèmes demandent la caractérisation des applications φ : A → B non nécessairement linéaires, qui laissent invariant une propriété, une relation ou un sous-ensemble. Dans le Chapitre 3, la description des applications surjectives φ de B(X) sur B(Y), qui satisfont c(φ(S)±φ(T)) = c(S ± T), (S,T ∈ B(X)), est donnée, où c(·) représente soit le module minimal, ou le module de surjectivité ou le module maximal et B(X) (resp. B(Y)) dénote l’algèbre de tous les opérateurs linéaires et bornés sur X (resp. sur Y). Dans le Chapitre 4, une question similaire pour la conorme des opérateurs, est considérée. La caractérisation des applications bicontinues et bijectives φ deB(X) surB(Y), qui satisfont γ(φ(S ± φ(T)) = γ(S ± T), (S,T ∈ B(X)), est obtenue. Le Chapitre 5 est consacré à la description des applications surjectives φ1,φ2 d’une algèbre de Banach semisimple A sur une algèbre de Banach B avec un socle essentiel, qui satisfont σ(φ1(a)φ2(b)) = σ(ab), (a,b ∈ A). Aussi, la caractérisation des applications φ de A sur B, sous les mêmes hypothèses sur A et B, qui satisfont σ(φ(a)φ(b)φ(a)) = σ(aba), (a,b ∈ A), est donnée. Comme conséquences, nous incluons les résultats obtenus au cas des algèbres B(X) et B(Y).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa- tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer- taines conditions aux limites. Dans le chapitre trois, nous introduirons une notion de tube-solution pour obtenir des théorèmes d’existence pour des systèmes d’équations différentielles du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de sous- et sur-solutions pour le problème aux limites de l’équation différentielle du troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois- sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34]. Le chapitre suivant porte sur l’existence de solutions pour deux types de sys- tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis- tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes et à une échelle de temps quelconque, un résultat obtenu pour des équations aux différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte- nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60]. Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in- clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore une fois à l’aide d’une hypothèse de tube-solution adaptée au problème. Au chapitre six, nous traitons l’existence de solutions pour des systèmes d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse que ces auteurs utilisent pour faire la majoration a priori est un cas particulier de notre hypothèse de tube-solution pour ce type de systèmes. Notons également que notre définition de tube-solution généralise aux systèmes les notions de sous- et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi, nous généralisons également des résultats obtenus pour des équations aux échelles de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis- tence pour un système dont le membre droit des équations dépend de la ∆-dérivée de la fonction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nous présentons une nouvelle approche pour formuler et calculer le temps de séparation des événements utilisé dans l’analyse et la vérification de différents systèmes cycliques et acycliques sous des contraintes linéaires-min-max avec des composants ayant des délais finis et infinis. Notre approche consiste à formuler le problème sous la forme d’un programme entier mixte, puis à utiliser le solveur Cplex pour avoir les temps de séparation entre les événements. Afin de démontrer l’utilité en pratique de notre approche, nous l’avons utilisée pour la vérification et l’analyse d’une puce asynchrone d’Intel de calcul d’équations différentielles. Comparée aux travaux précédents, notre approche est basée sur une formulation exacte et elle permet non seulement de calculer le maximum de séparation, mais aussi de trouver un ordonnancement cyclique et de calculer les temps de séparation correspondant aux différentes périodes possibles de cet ordonnancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Réalisé en cotutelle avec l'Université Paris-Diderot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce chapitre s’intéresse à plusieurs pays de l’UE et souligne les principaux aspects de leur cadre institutionnel respectif concernant les activités d’appro-visionnement en eau et d’assainissement. Il fournit également des exemples de cas où la participation du secteur privé dans le domaine de l’eau a posé un pro-blème, et d’autres où le secteur public est en charge du réseau de distribution. Le choix des pays évoqués vise à présenter diverses expériences et divers contextes géopolitiques, de l’Europe méditerranéenne à l’Europe du Nord en passant par les pays d’Europe centrale et orientale. En outre, les pays choisis comptent à la fois d’anciens membres de l’Europe des 15 et des membres plus récents. La dernière partie du chapitre traite de l’infuence de la législation européenne sur la gestion et la fourniture de services de distribution en eau. [Introductory paragraph to paper - see Additional Information].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette étude vise à identifier les caractéristiques des usagers qui les amèneraient à mieux utiliser ou à utiliser de façon plus innovatrice les technologies de l'information mises à leur disposition. Afin de répondre à cet objectif, nous étudierons, en particulier, le rôle de deux traits de personnalité (le ludisme informatique et la propension innover) comme facteurs qui influencent l’étendue de l’utilisation des logiciels de soutien à l'enseignement dans un environnement universitaire. De plus, ces traits de personnalité seront intégrés aux modèles actuels de l’acception et de l’utilisation des systèmes d’information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considérant les difficultés que les jeunes éprouvent à entrer dans l'écrit et les nombreux bienfaits que la musique apporte à l'être humain, nous avons voulu explorer ce qu'ont en commun l'entrée dans l'écrit et l'apprentissage de la musique. Les deux modèles théoriques qui ont été retenus (Ferreiro, 2000; Upitis, 1992) nous permettent de comprendre que les enfants conceptualisent chacun des systèmes d'écriture en traversant quatre principaux niveaux. Pour connaître le niveau de conceptualisation des systèmes d'écritures alphabétique et musicale (SEA et SEM) et leur évolution en cours d'année scolaire, 32 sujets provenaient de classes régulières et 20 de classes spéciales (difficultés langagières), tous de premier cycle du primaire, ont passé un test à trois reprises (octobre, février et avril). Les résultats démontrent entre autres que les élèves qui sont plus avancés dans leur conceptualisation du SEA le sont également dans celle du SEM en début d'année scolaire.