937 resultados para Synthetic-schemes
Resumo:
Three series of novel glitazones were designed and prepared by using appropriate synthetic schemes to incorporate glycine, aromatic and alicyclic amines via two carbon linker. Compounds were synthesized both under conventional and microwave methods. Nineteen out of twenty four synthesized compounds were evaluated for their in vitro glucose uptake activity using isolated rat hemi-diaphragm. Compounds, 6, 9a, 13a, 13b, 13c, 13f and 13h exhibited significant glucose uptake activity. Illustration about their synthesis and in vitro glucose uptake activity is described along with the structure activity relationships. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino de 1.º e 2.º Ciclos do Ensino Básico
Resumo:
In the present work different new approaches for the synthesis of Vitamin A are investigated. In these synthetic schemes, all the twenty carbon atoms of the target molecule are derived either fully from components isolated from common essential oils or partially from commercially available materials. By retrosynthetic analysis, Vitamin A molecule can be disconnected into a cyclic and a linear unit. Different methods for the synthesis of the linear and the cyclic components are described. The monoterpenes, geraniol and citral, major constituents of palmarosa and lemongrass oils, have the required basic carbon framework for consideration as starting materials for the synthesis of Vitamin A. The potential of these easily available naturally occurring compounds as promising starting materials for Vitamin A synthesis is demonstrated. Organoselenium and organosulfur mediated functional group transformations for the synthesis of the functionalised conjugated C10 linear components (ie., the dimethyloctatriene derivatives) are reported. The classical approaches as well as the attempted preparation of cyclic C10 and C13 units employed in the present study as intermediates for Vitamin A synthesis are described. The utility of commercially available materials namely 2-acetylbutyrolactone and levulinic acid in -the preparation of C5 intermediates for Vitamin A synthesis is demonstrated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The thermal stability and thermal decomposition pathways for synthetic iowaite have been determined using thermogravimetry in conjunction with evolved gas mass spectrometry. Chemical analysis showed the formula of the synthesised iowaite to be Mg6.27Fe1.73(Cl)1.07(OH)16(CO3)0.336.1H2O and X-ray diffraction confirms the layered structure. Dehydration of the iowaite occurred at 35 and 79°C. Dehydroxylation occurred at 254 and 291°C. Both steps were associated with the loss of CO2. Hydrogen chloride gas was evolved in two steps at 368 and 434°C. The products of the thermal decomposition were MgO and a spinel MgFe2O4. Experimentally it was found to be difficult to eliminate CO2 from inclusion in the interlayer during the synthesis of the iowaite compound and in this way the synthesised iowaite resembled the natural mineral.
Resumo:
The behavior of the hydroxyl units of synthetic goethite and its dehydroxylated product hematite was characterized using a combination of Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) during the thermal transformation over a temperature range of 180-270 degrees C. Hematite was detected at temperatures above 200 degrees C by XRD while goethite was not observed above 230 degrees C. Five intense OH vibrations at 3212-3194, 1687-1674, 1643-1640, 888-884 and 800-798 cm(-1), and a H2O vibration at 3450-3445 cm(-1) were observed for goethite. The intensity of hydroxyl stretching and bending vibrations decreased with the extent of dehydroxylation of goethite. Infrared absorption bands clearly show the phase transformation between goethite and hematite: in particular. the migration of excess hydroxyl units from goethite to hematite. Two bands at 536-533 and 454-452 cm(-1) are the low wavenumber vibrations of Fe-O in the hematite structure. Band component analysis data of FTIR spectra support the fact that the hydroxyl units mainly affect the a plane in goethite and the equivalent c plane in hematite.