953 resultados para Synthetic wavelength
Resumo:
Physical parameters of different types of lenses were measured through digital speckle pattern interferometry (DSPI) using a multimode diode laser as light source. When such lasers emit two or more longitudinal modes simultaneously the speckle image of an object appears covered of contour fringes. By performing the quantitative fringe evaluation the radii of curvature as well as the refractive indexes of the lenses were determined. The fringe quantitative evaluation was carried out through the four- and the eight-stepping techniques and the branch-cut method was employed for phase unwrapping. With all these parameters the focal length was calculated. This whole-field multi-wavelength method does enable the characterization of spherical and aspherical lenses and of positive and negative ones as well. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We studied the shape measurement of semiconductor components by holography with photorefractive Bi12TiO20 crystal as holographic medium and two diode lasers emitting in the red region as light sources. By properly tuning and aligning the lasers a synthetic wavelength was generated and the resulting holographic image of the studied object appears modulated by cos2-contour fringes which correspond to the intersection of the object surface with planes of constant elevation. The position of such planes as a function of the illuminating beam angle and the tuning of the lasers was studied, as well as the fringe visibility. The fringe evaluation was performed by the four stepping technique for phase mapping and through the branch-cut method for phase unwrapping. A damage in an integrated circuit was analysed as well as the relief of a coin was measured, and a precision up to 10 μm was estimated. © 2009 SPIE.
Resumo:
This work proposes a method for dioptric power mapping of progressive lenses through dual wavelength, low-coherence digital speckle pattern interferometry. Lens characterization finds several applications and is extremely useful in the fields of ophthalmology and astronomy, among others. The optical setup employs two red diode lasers which are conveniently aligned and tuned in order to generate a synthetic wavelength. The resulting speckle image formed onto a diffusive glass plate positioned behind the test lens appears covered of contour interference fringes describing the deformation on the light wavefront due to the analyzed lens. By employing phase stepping and phase unwrapping methods the wavefront phase was retrieved and then expressed in terms of a Zernike series. From this series, expressions for the dioptric power and astigmatic power were derived as a function of the x- and y-coordinates of the lens aperture. One spherical and two progressive lenses were measured. The experimental results presented a good agreement with those obtained through a commercial lensometer, showing the potentialities of the method. © 2013 Elsevier Ltd.
Resumo:
A simple and sensitive analytical method for simultaneous determination of anastrozole, bicalutamide, and tamoxifen as well as their synthetic impurities, anastrozole pentamethyl, bicalutamide 3-fluoro-isomer, and tamoxifen e-isomer, was developed and validated by using high performance liquid chromatography (HPLC). The separation was achieved on a Symmetry (R) C-8 column (100 x 4.6 mm i.d., 3.5 mu m) at room temperature (+/- 24 degrees C), with a mobile phase consisting of acetonitrile/water containing 0.18% N,N dimethyloctylamine and pH adjusted to 3.0 with orthophosphoric acid (46.5/53.5, v/v) at a flow rate of 1.0 mL min(-1) within 20 min. The detection was made at a wavelength of 270 nm by using ultraviolet (UV) detector. No interference peaks from excipients and relative retention time indicated the specificity of the method. The calibration curve showed correlation coefficients (r) > 0.99 calculated by linear regression and analysis of variance (ANOVA). The limit of detection (LOD) and limit of quantitation (LOQ), respectively, were 2.2 and 6.7 mu g mL(-1) for anastrozole, 2.61 and 8.72 mu g mL(-1) for bicalutamide, 2.0 and 6.7 mu g mL(-1) for tamoxifen, 0.06 and 0.22 mu g mL(-1) for anastrozole pentamethyl, 0.02 and 0.07 mu g mL(-1) for bicalutamide 3-fluoro-isomer, and 0.002 and 0.007 mu g mL(-1) for tamoxifen e-isomer. Intraday and interday relative standard deviations (RSDs) were <2.0% (drugs) and <10% (degradation products) as well as the comparison between two different analysts, which were calculated by f test. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The quantum yield of synthetic eumelanin is known to be extremely low and it has recently been reported to be dependent on excitation wavelength. In this paper, we present quantum yield as a function of excitation wavelength between 250 and 500 nm, showing it to be a factor of 4 higher at 250 nm than at 500 nm. In addition, we present a definitive map of the steady-state fluorescence as a function of excitation and emission wavelengths, and significantly, a three-dimensional map of the specific quantum yield: the fraction of photons absorbed at each wavelength that are subsequently radiated at each emission wavelength. This map contains clear features, which we attribute to certain structural models, and shows that radiative emission and specific quantum yield are negligible at emission wavelengths outside the range of 585 and 385 nm (2.2 and 3.2 eV), regardless of excitation wavelength. This information is important in the context of understanding melanin biofunctionality, and the quantum molecular biophysics therein. (c) 2005 American Institute of Physics.
Resumo:
Previously reported excitation spectra for eumelanin are sparse and inconsistent. Moreover, these studies have failed to account for probe beam attenuation and emission reabsorption within the samples, making them qualitative at best. We report for the first time quantitative excitation spectra for synthetic eumelanin, acquired for a range of solution concentrations and emission wavelengths. Our data indicate that probe beam attenuation and emission reabsorption significantly affect the spectra even in low-concentration eumelanin solutions and that previously published data do not reflect the true excitation profile. We apply a correction procedure (previously applied to emission spectra) to account for these effects. Application of this procedure reconstructs the expected relationship of signal intensity with concentration, and the normalized spectra show a similarity in form to the absorption profiles. These spectra reveal valuable information regarding the photophysics and photochemistry of eumelanin. Most notably, an excitation peak at 365 urn (3.40 eV), whose position is independent of emission wavelength, is possibly attributable to a 5,6-dihydroxyindole-2-carboxylic acid (DHICA) component singly linked to a polymeric structure.
Resumo:
We report a detailed photoluminescence study of cysteinyldopa-melanin ( CDM), the synthetic analogue of pheomelanin. Emission spectra are shown to be a far more sensitive probe of CDM's spectroscopic behavior than are absorption spectra. Although CDM and dopa-melanin ( DM, the synthetic analogue of eumelanin) have very similar absorption spectra, we find that they have very different excitation and emission characteristics; CDM has two distinct photoluminescence peaks that do not shift with excitation wavelength. Additionally, our data suggest that the radiative quantum yield of CDM is excitation energy dependent, an unusual property among biomolecules that is indicative of a chemically disordered system. Finally, we find that the radiative quantum yield for CDM is similar to 0.2%, twice that of DM, although still extremely low. This means that 99.8% of the energy absorbed by CDM is dissipated via nonradiative pathways, consistent with its role as a pigmentary photoprotectant.
Resumo:
We describe herein a general method for the controlled Heck arylation of allylated malonates. Both electron-rich and electron-poor aryldiazonium salts were readily employed as the aryl-transfer agents in good yields and in high chemo-, regio-, and stereoselectivity without formation of decarboxylated byproducts. Reaction monitoring via ESI-MS was used to support the formation of chelated Pd species through the catalytic cycle. Additionally, some Heck adducts were successfully used in the total synthesis of pharmacologically active γ-lactones.
Resumo:
In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.
Resumo:
Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene)-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.
Resumo:
The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.