992 resultados para Swelling polymer
Resumo:
A comparative study of two biopolymer based fiber optic humidity sensors is presented in this paper. Sensing elements Agarose and Chitosan swells in the presence of water vapour and undergoes changes in refractive index and modulates the intensity of light propagating through a fiber with Agarose or Chitosan as cladding.
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.
Resumo:
A cationic monomer 2-(methacryloyloxy)ethyl]trimethylammonium chloride was polymerized using N,N'-methylenebisacrylamide as the crosslinker to obtain a cationic superabsorbent polymer (SAP). This SAP was characterized by Fourier transform-infrared spectroscopy, and the equilibrium swelling capacity was determined by swelling in water. The SAP was subjected to cyclic swelling/deswelling in water and NaCl solution. The conductivity of the swelling medium was monitored during the swelling/deswelling and was related to the swelling/deswelling characteristics of the SAP. The adsorption of five anionic dyes of different classes on the SAP was carried out and was found to follow the first-order kinetics. The Langmuir adsorption isotherms were found to fit the equilibrium adsorption data. The dye adsorption capacity of the SAP synthesized in this study was higher than that obtained for other hydrogels reported in the literature. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Resumo:
[GRAPHICS]This work proposes a combined swelling-electron paramagnetic resonance (EPR) approach aiming at determining some unusual polymer solvation parameters relevant for chemical processes occurring inside beads. Batches of benzhydrylamine-resin (BHAR), a copolymer of styrene-1% divinylbenzene containing phenylmethylamine groups were, labeled with the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amine-4-carboxylic acid (TOAC), and their swelling properties and EPR spectra were examined in DCM and DMF. By taking into account the BHARs labeling degrees, the corresponding swelling values, and some polymer structural characteristics, it was possible to calculate polymer swelling parameters, among them, the volume and the number of sites per bead, site-site distances and site concentration. The latter values ranged from 17 to 170 angstrom and from 0.4 to 550 mM, respectively. EPR spectroscopy was applied to validate the multistep calculation strategy of these swelling parameters. Spin-spin interaction was detected in the labeled resins at site-site distances less than approximately 60 A or probe concentrations higher than approximately 1 x 10(-2) M, in close agreement with the values obtained for the spin probe free in solution. Complementarily, the yield of coupling reactions in different resins indicated that the greater the inter-site distance or the lower the site concentration, the faster the reaction. The results suggested that the model and the experimental measurements developed for the determination of solvation parameters represent a relevant step forward for the deeper understanding and improvement of polymer-related processes.
Resumo:
Copolyurethanes of hydroxy terminated polybutadiene (HTPB) and ISRO–Polyol (ISPO), an indigenously developed castor-oil based polyol, have been prepared using toluene diiso-cyanate and hexamethylenediisocyanate. The mechanical strength and swelling characteristics of the copolyurethanes cured with trimethylol propane and triethanolamine have been studied to evolve improved solid propellant binders. By varying the ratios of the two hydroxy pre-polymers, chain extenders, and crosslinkers, copolyurethanes having a wide range of tensile strength and elongation could be obtained. Many of these systems are desirable for their use as propellant binders. The results have been explained in terms of the measured crosslink densities and other swelling properties. © 1993 John Wiley & Sons, Inc.
Resumo:
A cationic superabsorbent polymer (SAP) was synthesized by carrying out the polymerization of 2-(methacryloyloxy)ethyl] trimethyl ammonium chloride) with N,N'-methylenebisacrylamide as the cross-linking agent. The SAP was subjected to degradation in dry and the equilibrium swollen state by thermo gravimetric analysis and exposure to ultraviolet radiation, respectively. The photodegradation was monitored by measuring changes in the swelling capacity and the dry weight of the SAP. The thermal degradation of the SAP occurred in three stages after the initial removal of moisture and the activation energies of the decomposition were determined.
Resumo:
The use of copolymer and polymer blends widened the possibility of creating materials with multilayered architectures. Hierarchical polymer systems with a wide array of micro and nanostructures are generated by thermally induced phase separation (TIPS) in partially miscible polymer blends. Various parameters like the interaction between the polymers, concentration, solvent/non-solvent ratio, and quenching temperature have to be optimized to obtain these micro/nanophase structures. Alternatively, the addition of nanoparticles is another strategy to design materials with desired hetero-phase structures. The dynamics of the polymer nanocomposite depends on the statistical ordering of polymers around the nanoparticle, which is dependent on the shape of the nanoparticle. The entropic loss due to deformation of polymer chains, like the repulsive interactions due to coiling and the attractive interactions in the case of swelling has been highlighted in this perspective article. The dissipative particle dynamics has been discussed and is correlated with the molecular dynamics simulation in the case of polymer blends. The Cahn Hillard Cook model on variedly shaped immobile fillers has shown difference in the propagation of the composition wave. The nanoparticle shape has a contributing effect on the polymer particle interaction, which can change the miscibility window in the case of these phase separating polymer blends. Quantitative information on the effect of spherical particles on the demixing temperature is well established and further modified to explain the percolation of rod shaped particles in the polymer blends. These models correlate well with the experimental observations in context to the dynamics induced by the nanoparticle in the demixing behavior of the polymer blend. The miscibility of the LCST polymer blend depends on the enthalpic factors like the specific interaction between the components, and the solubility product and the entropic losses occurring due to the formation of any favorable interactions. Hence, it is essential to assess the entropic and enthalpic interactions induced by the nanoparticles independently. The addition of nanoparticles creates heterogeneity in the polymer phase it is localized. This can be observed as an alteration in the relaxation behavior of the polymer. This changes the demixing behavior and the interaction parameter between the polymers. The compositional changes induced due to the incorporation of nanoparticles are also attributed as a reason for the altered demixing temperature. The particle shape anisotropy causes a direction dependent depletion, which changes the phase behavior of the blend. The polymer-grafted nanoparticles with varying grafting density show tremendous variation in the miscibility of the blend. The stretching of the polymer chains grafted on the nanoparticles causes an entropy penalty in the polymer blend. A comparative study on the different shaped particles is not available up to date for understanding these aspects. Hence, we have juxtaposed the various computational studies on nanoparticle dynamics, the shape effect of NPs on homopolymers and also the cases of various polymer blends without nanoparticles to sketch a complete picture on the effect of various particles on the miscibility of LCST blends.
Resumo:
Here we demonstrate a novel application that employs the ion exchange properties of conducting polymers (CP) to modulate the detection window of a CP based biosensor under electrical stimuli. The detection window can be modulated by electrochemically controlling the degree of swelling of the CP associated with ion transport in and out of the polymer. We show that the modulation in the detection window of a caffeine imprinted polypyrrole biosensor, and by extension other CP based biosensors, can be achieved with this mechanism. Such dynamic modulation in the detection window has great potential for the development of smart biosensors, where the sensitivity of the sensor can be dynamically optimized for a specific test solution.
Resumo:
A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs.
Resumo:
A PEO-tethered layer on a PDMS (polydimethylsiloxane) cross-linked network has been prepared by a swelling-deswelling process. During swelling, the PDMS block of a PDMS-b-PEO diblock copolymer penetrates into the PDMS substrate and interacts with PDMS chains because of the van der Waals force and hydrophobic interaction between them. Upon deswelling, the PDMS block is trapped in the PDMS matrix while the PEO, as a hydrophilic block, is tethered to the surface. The PEO-tethered layer showed stability when treated in water for 16 h. The surface fraction of PEO and the wetting property of the PEO-tethered PDMS surface can be controlled by the cross linking density of the PDMS matrix. A patterned PEO-tethered layer on a PDMS network was also created by microcontact printing and water condensation figures (CFs) were used to study the patterned surface with different wetting properties.
Resumo:
Macroporous and modified macroporous poly(styrene-co-methyl methacrylate-co-divinylbenzene) particles (m-PS and mm-PS) supported Cp2ZrCl2 were prepared and applied to ethylene polymerization using methylaluminoxane (MAO) as cocatalyst. The influences of the swelling response of the support particles on the catalyst loading capabilities of the supports as well as on the activities of the supported catalysts were studied. It was shown that the Zr loadings of the supports and the activities of the supported catalysts increased with the swelling extent of the support particles. The m-PS or mm-PS supported catalysts exhibited very high activities when the support particles were well swollen, whereas those catalysts devoid of swelling treatment gave much lower activities. Investigation on the distribution of the supports in the polyethylene by TEM indicated that the swelling of the support particles allowed the fragmentation of the catalyst particles. In contrast, the fragmentation of the support particles with poor swelling was hindered during ethylene polymerization.
Resumo:
A new method of measuring the mean size of solvent clusters in swollen polymer membrane is presented in this paper. This method is based on a combination of inverse gas chromatography (IGC) and equilibrium swelling. The mechanism is that weight fraction activity coefficient of solvent in swollen polymer is influenced by its clusters size. The mean clusters size of solvent in swollen polymer can be calculated as the quotient of the weight fraction activity coefficient of clustering system dividing the weigh fraction activity coefficient of non-clustering system. In this experiment, the weigh fraction activity coefficient of non-clustering system was measured with IGC. Methanol, ethanol and polyimide systems were tested with the new method at three temperatures, 20, 40, and 60degreesC. The mean clusters size of methanol in polyimide was five, four, and three at each temperature condition, respectively. Ethanol did not form clusters (the mean clusters size was one). In contrast to the inherent narrow temperature range in DSC, XRD, and FTIR methods, the temperature range in IGC and equilibrium swelling is broad. Compared with DSC. XRD. and FTIR, this new method can detect the clusters of solvent-polymer system at higher temperature.
Resumo:
The synthesis and properties of simultaneously interpenetrating networks (SINs) based on poly(polyethylene glycol diacrylate) (PEGDA) and epoxy (diglycidyl ether of bisphenol A, DGEBA) were studied. The effect of compositional variation on the morphology and properties of products was investigated. The swelling coefficient, densities, glass transition behavior, and thermal stability of these interpenetrating networks (IPNs) are discussed. Microphase separation morphological structures were found in all PEGDA/DGEBA IPNs. Decreased swelling ratios compared to the calculated swelling coefficients based on the weight additivity of the components were obtained after the formation of IPNs. Increased density and thermal stability were also obtained in these IPNs, implying the existence of interpenetration (topological entanglements) among the component networks.
Resumo:
An equation has been derived for the equilibrium swelling of sequential interpenetrating polymer networks (IPNs), which exhibit a single glass transition temperature and the two components are considered to be compatible. The properties of the equilibrium swelling and elastic modulus of sequential poly(vinyl acetate)/poly(methyl acrylate) IPNs have been discussed according to the derived equation and the Siegfried-Thomas-Sperling formula of the elastic modulus for homo IPNs. In both fully swollen and bulk states, there was favourable evidence for added physical crosslinks in poly(vinyl acetate)/poly(methyl acrylate) IPNs. The Binder-Frisch theory is also discussed.