922 resultados para Sweet corn
Resumo:
Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 2005. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2005. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of sweet corn. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.
Resumo:
Identification and analysis of allelic variation in carotenoid biosynthesis genes present in sweet corn germplasm for eye health.
Resumo:
The objectives of this study were to quantify the components of genetic variance and the genetic effects, and to examine the genetic relationship of inbred lines extracted from various shrunken2(sh2) breeding populations. Ten diverse inbred lines developed from genetic background, were crossed in half diallel. Parents and their F1 hybrids were evaluated at three environments. The parents were genotyped using 20 polymorphic simple sequence repeats (SSR). Agronomic and quality traits were analysed by a mixed linear model according to additive-dominance genetic model. Genetic effects were estimated using an adjusted unbiased prediction method. Additive variance was more important than dominance variance in the expression of traits related to ear aspects (husk ratio and percentage of ear filled) and eating quality (flavour and total soluble solids). For agronomic traits, however, dominance variance was more important than additive variance. The additive genetic correlation between flavour and tenderness was strong (r = 0.84, P <0.01). Flavour, tenderness and kernel colour additive genetic effects were not correlated with yield related traits. Genetic distance (GD), estimated from SSR profiles on the basis of Jaccard's similarity coefficient varied from 0.10 to 0.77 with an average of 0.56. Cluster analysis classified parents according to their pedigree relationships. In most studied traits, F1 performance was not associated with GD.
Resumo:
With 6 tables Abstract The objectives of this study were to evaluate the importance of heterosis for agronomic and quality traits in shrunken (sh2) sweet corn, assess the usefulness of combining ability to predict the value of parents and their crosses for further genetic improvement and examine whether genetic divergence can predict heterosis or F1 performance. Ten genetically diverse shrunken (sh2) sweet corn inbred lines were used to generate 45 F1s. F1s and parents were evaluated for agronomic and quality traits across environments. Heterosis was more important for yield-related traits than it was for ear aspects and eating quality. Heterosis for most traits was mostly dependent on dominance genetic effects of parental lines. Parents and F1per se performance were highly correlated with general combining ability effects and mid-parent values, respectively, for most traits. Hybrid performance for flavour and plant height was significantly but weakly related to simple sequence repeat (SSR)-based genetic distance (GD). Phenotypic distance (PD), estimated from phenotypic traits was correlated with heterosis for total soluble solids, ear length and flavour. © 2012 State of Queensland.
Resumo:
Carotenoids are responsible for the yellow color of sweet corn (Zea mays var. saccharata), but are also potentially the source of flavor compounds from the cleavage of carotenoid molecules. The carotenoid-derived volatile, -ionone, was identified in both standard yellow sweet corn (Hybrix5) and a zeaxanthin-enhanced experimental variety (HZ) designed for sufferers of macular degeneration. As -ionone is highly perceivable at extremely low concentration by humans, it was important to confirm if alterations in carotenoid profile may also affect flavor volatiles. The concentration of -ionone was most strongly correlated (R2 > 0.94) with the -arm carotenoids, -carotene, -cryptoxanthin, and zeaxanthin, and to a lesser degree (R2 = 0.90) with the α-arm carotenoid, zeinoxanthin. No correlation existed with either lutein (R2 = 0.06) or antheraxanthin (R2 = 0.10). Delaying harvest of cobs resulted in a significant increase of both carotenoid and -ionone concentrations, producing a 6-fold increase of ?-ionone in HZ and a 2-fold increase in Hybrix5, reaching a maximum of 62g/kg FW and 24g/kg FW, respectively.
Resumo:
Zeaxanthin, along with its isomer lutein, are the major carotenoids contributing to the characteristic colour of yellow sweet-corn. From a human health perspective, these two carotenoids are also specifically accumulated in the human macula, and are thought to protect the photoreceptor cells of the eye from blue light oxidative damage and to improve visual acuity. As humans cannot synthesise these compounds, they must be accumulated from dietary components containing zeaxanthin and lutein. In comparison to most dietary sources, yellow sweet-corn (Zea mays var. rugosa) is a particularly good source of zeaxanthin, although the concentration of zeaxanthin is still fairly low in comparison to what is considered a supplementary dose to improve macular pigment concentration (2 mg/person/day). In our present project, we have increased zeaxanthin concentration in sweet-corn kernels from 0.2 to 0.3 mg/100 g FW to greater than 2.0 mg/100 g FW at sweet-corn eating-stage, substantially reducing the amount of corn required to provide the same dosage of zeaxanthin. This was achieved by altering the carotenoid synthesis pathway to more than double total carotenoid synthesis and to redirect carotenoid synthesis towards the beta-arm of the pathway where zeaxanthin is synthesised. This resulted in a proportional increase of zeaxanthin from 22% to 70% of the total carotenoid present. As kernels increase in physiological maturity, carotenoid concentration also significantly increases, mainly due to increased synthesis but also due to a decline in moisture content of the kernels. When fully mature, dried kernels can reach zeaxanthin and carotene concentrations of 8.7 mg/100 g and 2.6 mg/100 g, respectively. Although kernels continue to increase in zeaxanthin when harvested past their normal harvest maturity stage, the texture of these 'over-mature' kernels is tough, making them less appealing for fresh consumption. Increase in zeaxanthin concentration and other orange carotenoids such as p-carotene also results in a decline in kernel hue angle of fresh sweet-corn from approximately 90 (yellow) to as low as 75 (orange-yellow). This enables high-zeaxanthin sweet-corn to be visually-distinguishable from standard yellow sweet-corn, which is predominantly pigmented by lutein.
Resumo:
This report presents the process and outcomes of a five year project, which employed genetics and breeding approach for integrating disease resistance,agronomy and quality traits that enhances sustainable productivity improvement in sweet corn production. The report outlines a molecular markers based approach to introgress quantitative traits loci that are believed to contribute to resistance to downy mildew, a potentially devastating disease that threatens sweet corn and other similar crops. It also details the approach followed to integrate resistances for other major diseases such as southern rust (caused by Puccinia polysora Underw), Northern Corn Leaf Blight (Exserohilum turcicum) with improved agronomy and eating quality. The report explains the importance of heterosis (hybrid vigour) and combining ability in the development of useful sweet corn hybrids. It also explains the relevance of parental performance to predict its breeding value and the performance of its hybrids.
Resumo:
Organic sweet maize consists of a new industrial crop product. Field experiment was conducted to determine the effects of cultural systems on growth, photosynthesis and yield components of sweet maize crop (Zea mays L. F-1 hybrid 'Midas'). A randomized complete block design was employed with four replicates per treatment (organic fertilization: cow manure (5, 10 and 20 t ha(-1)), poultry manure (5, 10 and 20 t ha(-1)) and barley mulch (5, 10 and 20 t ha(-1)), synthetic fertilizer (240 kg N ha(-1)): 21-0-0 and control). The lowest dry weight, height and leaf area index and sod organic matter were measured in the control treatment. Organic matter content was proportionate to the amount of manure applied. The control plots had the lowest yield (1593 kg ha(-1)) and the double rate cow manure plots the had,greatest one. (6104 kg ha(-1)). High correlation between sweet corn yield and organic matter was registered. Moreover, the lowest values of 1000-grain weight were obtained with control plot. The fertilizer plot gave values which were similar to the full rate cow manure treatment. The photosynthetic race of the untreated control was significantly lower than that of the other treatments. The phorosynthetic rate increased as poultry manure and barley mulch ram decreased and as cow manure increased. Furthermore the untreated control had the lowest stomatal conductance and chlorophyll content. Our results indicated that sweet corn growth and yield in the organic plots was significantly higher than those in the conventional plots.
Resumo:
The X-ray test is a precise, fast and non-destructive method to detect mechanical damage in seeds. In the present study, the efficiency of X-ray analysis in identifying the extent of mechanical damage in sweet corn seeds and its relationship with germination and vigor was evaluated. Hybrid 'SWB 551' (sh2) seeds with round (R) and flat (F) shapes were classified as large (L), medium (M1, M2 and M3) and small (S), using sieves with round and oblong screens. After artificial exposure to different levels of damage (0, 1, 3, 5 and 7 impacts), seeds were X-rayed (15 kV, 5 min) and submitted to germination (25 °C/5 days) and cold (10 °C/7 days) tests. Digital images of normal and abnormal seedlings and ungerminated seeds from germination and cold tests were jointly analyzed with the seed X-ray images. Results showed that damage affecting the embryonic axis resulted in abnormal seedlings or dead seeds in the germination and cold tests. The X-ray analysis is efficient for identifying mechanical damage in sweet corn seeds, allowing damage severity to be associated with losses in germination and vigor.
Resumo:
The 2011 sweet corn cultivar trial evaluated 20 sugary enhanced (se) and synergistic (se/sh2) cultivars having bicolored kernels to identify good production and ear characteristics for local marketing or short-distance shipping.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"April 1956."