993 resultados para Suspension Test
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
INTRODUCTION An accurate description of the biomechanical behavior of the spine is crucial for the planning of scoliotic surgical correction as well as for the understanding of degenerative spine disorders. The current clinical assessments of spinal mechanics such as side-bending or fulcrum-bending tests rely on the displacement of the spine observed during motion of the patient. Since these tests focused solely on the spinal kinematics without considering mechanical loads, no quantification of the mechanical flexibility of the spine can be provided. METHODS A spinal suspension test (SST) has been developed to simultaneously monitor the force applied on the spine and the induced vertebral displacements. The system relies on cervical elevation of the patient and orthogonal radiographic images are used to measure the position of the vertebras. The system has been used to quantify the spinal flexibility on five AIS patients. RESULTS Based on the SST, the overall spinal flexibility varied between 0.3 °/Nm for the patient with the stiffer curve and 2 °/Nm for the less rigid curve. A linear correlation was observed between the overall spinal flexibility and the change in Cobb angle. In addition, the segmental flexibility calculated for five segments around the apex was 0.13 ± 0.07 °/Nm, which is similar to intra-operative stiffness measurements previously published. CONCLUSIONS In summary, the SST seems suitable to provide pre-operative information on the complex functional behavior and stiffness of spinal segments under physiological loading conditions. Such tools will become increasingly important in the future due to the ever-increasing complexity of the surgical instrumentation and procedures.
Resumo:
Stress serves as an adaptive mechanism and helps organisms to cope with life-threatening situations. However, individual vulnerability to stress and dysregulation of this system may precipitate stress-related disorders such as depression. The neurobiological circuitry in charge of dealing with stressors has been widely studied in animal models. Recently our group has demonstrated a role for lysophosphatidic acid (LPA) through the LPA1 receptor in vulnerability to stress, in particular the lack of this receptor relates to robust decrease of adult hippocampal neurogenesis and induction of anxious and depressive states. Nevertheless, the specific abnormalities in the limbic circuit in reaction to stress remains unclear. The aim of this study is to examine the differences in the brain activation pattern in the presence or absence of LPA1 receptor after acute stress. For this purpose, we have studied the response of maLPA1-null male mice and normal wild type mice to an intense stressor: Tail Suspension Test. Activation induced by behaviour of brain regions involved in mood regulation was analysed by stereological quantification of c-Fos immunoreactive positive cells. We also conducted multidimensional scaling analysis in order to unravel coativation between structures. Our results revealed hyperactivity of stress-related structures such as amygdala and paraventricular nucleus of the hypothalamus in the knockout model and different patterns of coactivation in both genotypes using a multidimensional map. This data provides further evidence to the engagement of the LPA1 receptors in stress regulation and sheds light on different neural pathways under normal and vulnerability conditions that can lead to mood disorders.
Resumo:
Transport regulators consider that, with respect to pavement damage, heavy vehicles (HVs) are the riskiest vehicles on the road network. That HV suspension design contributes to road and bridge damage has been recognised for some decades. This thesis deals with some aspects of HV suspension characteristics, particularly (but not exclusively) air suspensions. This is in the areas of developing low-cost in-service heavy vehicle (HV) suspension testing, the effects of larger-than-industry-standard longitudinal air lines and the characteristics of on-board mass (OBM) systems for HVs. All these areas, whilst seemingly disparate, seek to inform the management of HVs, reduce of their impact on the network asset and/or provide a measurement mechanism for worn HV suspensions. A number of project management groups at the State and National level in Australia have been, and will be, presented with the results of the project that resulted in this thesis. This should serve to inform their activities applicable to this research. A number of HVs were tested for various characteristics. These tests were used to form a number of conclusions about HV suspension behaviours. Wheel forces from road test data were analysed. A “novel roughness” measure was developed and applied to the road test data to determine dynamic load sharing, amongst other research outcomes. Further, it was proposed that this approach could inform future development of pavement models incorporating roughness and peak wheel forces. Left/right variations in wheel forces and wheel force variations for different speeds were also presented. This led on to some conclusions regarding suspension and wheel force frequencies, their transmission to the pavement and repetitive wheel loads in the spatial domain. An improved method of determining dynamic load sharing was developed and presented. It used the correlation coefficient between two elements of a HV to determine dynamic load sharing. This was validated against a mature dynamic loadsharing metric, the dynamic load sharing coefficient (de Pont, 1997). This was the first time that the technique of measuring correlation between elements on a HV has been used for a test case vs. a control case for two different sized air lines. That dynamic load sharing was improved at the air springs was shown for the test case of the large longitudinal air lines. The statistically significant improvement in dynamic load sharing at the air springs from larger longitudinal air lines varied from approximately 30 percent to 80 percent. Dynamic load sharing at the wheels was improved only for low air line flow events for the test case of larger longitudinal air lines. Statistically significant improvements to some suspension metrics across the range of test speeds and “novel roughness” values were evident from the use of larger longitudinal air lines, but these were not uniform. Of note were improvements to suspension metrics involving peak dynamic forces ranging from below the error margin to approximately 24 percent. Abstract models of HV suspensions were developed from the results of some of the tests. Those models were used to propose further development of, and future directions of research into, further gains in HV dynamic load sharing. This was from alterations to currently available damping characteristics combined with implementation of large longitudinal air lines. In-service testing of HV suspensions was found to be possible within a documented range from below the error margin to an error of approximately 16 percent. These results were in comparison with either the manufacturer’s certified data or test results replicating the Australian standard for “road-friendly” HV suspensions, Vehicle Standards Bulletin 11. OBM accuracy testing and development of tamper evidence from OBM data were detailed for over 2000 individual data points across twelve test and control OBM systems from eight suppliers installed on eleven HVs. The results indicated that 95 percent of contemporary OBM systems available in Australia are accurate to +/- 500 kg. The total variation in OBM linearity, after three outliers in the data were removed, was 0.5 percent. A tamper indicator and other OBM metrics that could be used by jurisdictions to determine tamper events were developed and documented. That OBM systems could be used as one vector for in-service testing of HV suspensions was one of a number of synergies between the seemingly disparate streams of this project.
Resumo:
The relative influence of various heavy vehicle design features on road-damaging potential is discussed. Testing procedures that could be used to measure the road-damaging potential of heavy vehicles are examined. A validated vehicle simulation is used to examine some of the characteristics of dynamic tyre forces generated by typical leaf sprung and air sprung articulated heavy vehicles for typical highway conditions. The proposed EC suspension test is simulated and the results compared with dynamic tyre forces generated under highway conditions. It is concluded that the road-damaging potential of a vehicle cannot be assessed by the simplistic parametric measurement of the proposed EC test. It is questionable whether a vehicle that passes the test will be any more 'road friendly' than one that fails.
Resumo:
353 págs.
Resumo:
Em humanos, uma série de estudos vem sugerindo que o hemisfério esquerdo é particularmente importante no controle e execução de movimentos. De modo geral, lesões no hemisfério esquerdo promovem déficits motores mais pronunciados que lesões semelhantes no hemisfério direito. Neste trabalho utilizamos a hemisferectomia unilateral para avaliar a contribuição de cada hemisfério na função motora em camundongos. Camundongos Suíços adultos foram submetidos a hemisferectomia unilateral direita (HD) ou esquerda (HE) ou aos procedimentos de controle. Quinze dias após cirurgia, a coordenação motora de cada animal foi avaliada no teste da locomoção forçada em cilindro giratório (Rotarod). A latência para a queda do grupo controle foi significativamente maior que a do grupo HD e não diferiu da do grupo HE. Para auxiliar a interpretação dos resultados obtidos no ROTAROD, uma parte dos animais foi submetida a uma bateria adicional de testes comportamentais na seguinte seqüência: teste de campo aberto, avaliação qualitativa da assimetria sensório-motora, teste da grade elevada e teste de suspensão pela cauda. De modo interessante, no teste da grade elevada, enquanto o grupo HD apresentou o desempenho da pata traseira esquerda (contralateral à lesão) significativamente pior que o da direita, os grupos Controle e HE não apresentaram diferenças entre as duas patas traseiras. De modo análogo ao observado em humanos, nossos resultados sugerem uma ação assimétrica dos hemisférios cerebrais no controle da função motora em camundongos.
Resumo:
Depression is among the leading causes of disability worldwide. Currently available antidepressant drugs have unsatisfactory efficacy, with up to 60% of depressed patients failing to respond adequately to treatment. Emerging evidence has highlighted a potential role for the efflux transporter P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), in the aetiology of treatment-resistant depression. In this thesis, the potential of P-gp inhibition as a strategy to enhance the brain distribution and pharmacodynamic effects of antidepressant drugs was investigated. Pharmacokinetic studies demonstrated that administration of the P-gp inhibitors verapamil or cyclosporin A (CsA) enhanced the BBB transport of the antidepressants imipramine and escitalopram in vivo. Furthermore, both imipramine and escitalopram were identified as transported substrates of human P-gp in vitro. Contrastingly, human P-gp exerted no effect on the transport of four other antidepressants (amitriptyline, duloxetine, fluoxetine and mirtazapine) in vitro. Pharmacodynamic studies revealed that pre-treatment with verapamil augmented the behavioural effects of escitalopram in the tail suspension test (TST) of antidepressant-like activity in mice. Moreover, pre-treatment with CsA exacerbated the behavioural manifestation of an escitalopram-induced mouse model of serotonin syndrome, a serious adverse reaction associated with serotonergic drugs. This finding highlights the potential for unwanted side-effects which may occur due to increasing brain levels of antidepressants by P-gp inhibition, although further studies are needed to fully elucidate the mechanism(s) at play. Taken together, the research outlined in this thesis indicates that P-gp may restrict brain concentrations of escitalopram and imipramine in patients. Moreover, we show that increasing the brain distribution of an antidepressant by P-gp inhibition can result in an augmentation of antidepressant-like activity in vivo. These findings raise the possibility that P-gp inhibition may represent a potentially beneficial strategy to augment antidepressant treatment in clinical practice. Further studies are now warranted to evaluate the safety and efficacy of this approach.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Farmacologia) - IBB
Resumo:
The efficacy of a new skin disinfectant, 2% (w/v) chlorhexidine gluconate (CHG) in 70% (v/v) isopropyl alcohol (IPA) (ChloraPrep®), was compared with five commonly used skin disinfectants against Staphylococcus epidermidis RP62A in the presence or absence of protein, utilizing quantitative time-kill suspension and carrier tests. All six disinfectants [70% (v/v) IPA, 0.5% (w/v) aqueous CHG, 2% (w/v) aqueous CHG, 0.5% (w/v) CHG in 70% (v/v) IPA and 10% (w/v) aqueous povidone iodine (PI)] achieved a log10 reduction factor of 5, in colony-forming units/mL, in a suspension test (exposure time 30 s) in the presence and absence of 10% human serum. Subsequent challenges of S. epidermidis RP62A in a biofilm (with and without human serum) demonstrated reduced bactericidal activity. Overall, the most effective skin disinfectants tested against S. epidermidis RP62A were 2% (w/v) CHG in 70% IPA and 10% (w/v) PI. These results suggest that enhanced skin antisepsis may be achieved with 2% (w/v) CHG in 70% (v/v) IPA compared with the three commonly used CHG preparations [0.5% (w/v) aqueous CHG, 2% (w/v) aqueous CHG and 0.5% (w/v) CHG in 70% (v/v) IPA]. © 2005 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
During the last decades, it has been established that there is a relationship between major depression and activation of immune system. Nociceptin/orphanin FQ (N/OFQ) is the natural ligand of a Gi-protein coupled receptor named NOP, both compose the peptidergic system wich is involved in the regulation of mood states and inflammatory responses. Considering these actions, the present thesis aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. Systemic administration of LPS doses, that do not cause sepsis in mice, induce changes in their behaviors related with activity of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukins 6 (IL-6) and 1β (IL-1 β). At the time points of 2 to 6 h and 24 h after intraperitoneal injection, mice treated with LPS displayed, respectively, sickness and depressive-like behaviors. In the present work the administration of LPS 0.8 mg/kg (ip) significantly induced sickness signs in Swiss and CD-1 mice, such as weight loss, transient reduction in rectal temperature and decrease of food and water intake. Moreover at 24 h after LPS injection these same mice strains displayed significantly increased immobility time on the tail suspension test (TST) when compared with control mice, this alteration was not related with possible locomotion impairments as verified on the open field test. Treatment with Nortriptyline 30 mg/kg (ip, 60 min prior the TST) reduced the immobility time of control and LPS-treated mice and was used as standard antidepressant. The NOP receptor antagonist SB-612111 (10 mg/kg, ip), 30 min prior LPS, did not modify LPS-induced sickness signs and depressive-like behavior. However, when injected 24 h after LPS treatment, SB-612111 (ip, 30 min prior the TST) as well as the peptidergic NOP receptor antagonist UFP-101 (10 nmol/2μL, icv, 5 min prior the TST) significantly reversed the toxin effects. The protocol of LPS-induced depressive-like states was also tested in NOP receptor knockout mice (NOP(-/-)) and their respective wild types (NOP(+/+)). LPS evoked transient rectal temperature reduction in NOP(-/-) mice and loss of body weight, food and water intake reduction in both NOP(+/+) and NOP(-/-) mice. The consumption of water was significantly different due to the genotype. LPS injection induced transient changes in pro-inflammatory cytokines. At 6 h after LPS injection, serum levels of TNF-α were significantly increased in NOP(+/+) and NOP(-/-) mice, as the IL-6 levels were significantly increased just in NOP(+/+) serum. At 24 h after LPS treatment the pro-inflammatory cytokines had returned to the baseline levels in both genotypes. LPS treatment elicited depressive-like effects in NOP(+/+) but not in NOP(-/-) mice. The data obtained during the execution of this doctoral thesis reveal that pharmacological and genetic blockade of NOP signaling does not affect LPS evoked sickness signs while reversing depressive-like behavior. In conclusion, these results highlight the involvement of the peptidergic system N/OFQ - NOP receptor in the modulation of behaviors related to mood and activation of the immune system.
Resumo:
This paper presents a multi-objective optimization strategy for heavy truck suspension systems based on modified skyhook damping (MSD) control, which improves ride comfort and road-friendliness simultaneously. A four-axle heavy truck-road coupling system model was established using functional virtual prototype technology; the model was then validated through a ride comfort test. As the mechanical properties and time lag of dampers were taken into account, MSD control of active and semi-active dampers was implemented using Matlab/Simulink. Through co-simulations with Adams and Matlab, the effects of passive, semi-active MSD control, and active MSD control were analyzed and compared; thus, control parameters which afforded the best integrated performance were chosen. Simulation results indicated that MSD control improves a truck’s ride comfort and roadfriendliness, while the semi-active MSD control damper obtains road-friendliness comparable to the active MSD control damper.
Resumo:
A low-cost test bed was made from a modified heavy vehicle (HV) brake tester. By rotating a test HV’s wheel on an eccentric roller, a known vibration was imparted to the wheel under test. A control case for dampers in good condition was compared with two test cases of ineffective shock absorbers. Measurement of the forces at the bearings of the roller provided an indication of the HV wheel-forces. Where the level of serviceability of the shock absorbers varied, differences in wheel load provided a quality indicator corresponding to a change of damper characteristic. Conclusions regarding the levels of damper maintenance beyond which HV suspensions cause road damage and dynamic wheel forces at the threshold of tyre wear at which HV shock absorbers are normally replaced are presented.