915 resultados para Supported heteropolyacid
Resumo:
A supported heteropolyacid (HPA), H3PMo12O40/SiO2, calcined in vacuum at 150 degrees C, has been shown to be an efficient solid acid catalyst for the synthesis of 2-butoxy ethanol with high selectivity. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Different catalysts, based on heteropolyacids supported on activated carbon fibers, have been prepared for palmitic acid esterification reaction. The influence of the catalyst (heteropolyacid) and the support on the catalytic activity have been analyzed. The results prove that an adequate combination of both is required to achieve the most suitable catalysts. Regarding to the heteropolyacid, phosphomolybdic acid seems to be the most suitable appropriate taking into account its lowest leaching. About the support, it must show an optimum microporosity, which must be wide enough to allow the entrance and exit of the reagents and products but not too wide in order to avoid the leaching of the catalyst. In addition, both decreasing of the catalytic activity and its recovery over several cycles have been analyzed.
Resumo:
The valorization of glycerol has been widely studied notably due to the oversupply of the latter from biodiesel production. Among the different upgrading reactions, dehydration to acrolein is of high interest due to the importance of acrolein as an intermediate for polymer industry (via acrylic acid) and for feed additive (synthon for DL-methionine). It is known that acrolein can be obtained by glycerol catalytic dehydration over acid catalysts. Zeolites and heteropolyacid catalysts are initially highly active, but deactivate rapidly with time on stream by coking, whilst mixed metal oxides are more stable catalytic systems but less selective and in addition they require an activation period. In this talk, the strategy we followed is described. It consisted in a parallel approach in which we developed supported heteropolyacid-based catalysts with increased stability and acrolein selectivity by using a ZrO2-grafted SBA-15 playing the role of the support for silico-tungstic acid active phase, as well as a new concept based on a two zones fluidized bed reactor (TZFBR) to tackle the unavoidable deactivation issue of the HPA catalysts. This type of reactor comprises – in one single capacity – reaction and regeneration zones. In the second part of the lecture the REALCAT platform was introduced. REALCAT (French acronym standing for ‘Advanced High-Throughput Technologies Platform for Biorefineries Catalysts Design’) is an highly integrated platform devoted to the acceleration of innovation in all the fields of industrial catalysis with an emphasis on emergent biorefinery catalytic processes. In this extremely competitive field, REALCAT consists in a versatile High-Throughput Technologies (HTT) platform devoted to innovation in heterogeneous, homogeneous or biocatalysts AND their combinations under the ultra-efficient very novel concept of hybrid catalysis.
Resumo:
It is known that MCM-41 structures have very weak acid sites because of the lack of the bridging hydroxyl groups present in zeolites. Strong acidity however is required for the potential use of these materials in some specific applications such as: cracking and hydrotreating of heavy residue molecules, cracking of waste plastic, etc. The acidity enhancement of the MCM-41 materials was assessed using the n-hexane and polyethylene cracking reactions. MCM-41 samples were impregnated using heteropolyacid (HPA) such as tungestophospheric acid. The catalyst samples were characterized also by x-ray diffraction and benzene adsorption.
Resumo:
A series of zirconium phosphate supported WOx solid acid catalysts with W loadings from 1–25 wt% have been prepared on high surface area zirconium phosphate by a surface grafting method. Catalysts were characterized by N2 adsorption, FTIR, Raman, UV-Vis, 31P MAS NMR, pyridine TPD and X-ray methods. Spectroscopic measurements suggest a Keggin-type structure forms on the surface of zirconium phosphate as a ([triple bond, length as m-dash]ZrOH2+)(ZrPW11O405−) species. All catalysts show high activity in palmitic acid esterification with methanol. These materials can be readily separated from the reaction system for re-use, and are resistant to leaching of the active heteropolyacid, suggesting potential industrial applications in biodiesel synthesis. © The Royal Society of Chemistry 2006.
Resumo:
In this work, natural palygorskite impregnated with zero-valent iron (ZVI) was prepared and characterised. The combination of ZVI particles on surface of fibrous palygorskite can help to overcome the disadvantage of ultra-fine powders which may have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. There is a significant increase of methylene blue (MB) decolourized efficiency on acid treated palygorskite with ZVI grafted, within 5 mins, the concentration of MB in the solution was decreased from 94 mg/L to around 20 mg/L and the equilibration was reached at about 30 to 60 mins with only around 10 mg/L MB remained in solution. Changes in the surface and structure of prepared materials were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, surface analysing and scanning electron microscopy (SEM) with element analysis and mapping. Comparing with zero-valent iron and palygorskite, the presence of zero-valent iron reactive species on the palygorskite surface strongly increases the decolourization capacity for methylene blue, and it is significant for providing novel modified clay catalyst materials for the removal of organic contaminants from waste water.
Resumo:
The current understanding of students’ group metacognition is limited. The research on metacognition has focused mainly on the individual student. The aim of this study was to address the void by developing a conceptual model to inform the use of scaffolds to facilitate group metacognition during mathematical problem solving in computer supported collaborative learning (CSCL) environments. An initial conceptual framework based on the literature from metacognition, cooperative learning, cooperative group metacognition, and computer supported collaborative learning was used to inform the study. In order to achieve the study aim, a design research methodology incorporating two cycles was used. The first cycle focused on the within-group metacognition for sixteen groups of primary school students working together around the computer; the second cycle included between-group metacognition for six groups of primary school students working together on the Knowledge Forum® CSCL environment. The study found that providing groups with group metacognitive scaffolds resulted in groups planning, monitoring, and evaluating the task and team aspects of their group work. The metacognitive scaffolds allowed students to focus on how their group was completing the problem-solving task and working together as a team. From these findings, a revised conceptual model to inform the use of scaffolds to facilitate group metacognition during mathematical problem solving in computer supported collaborative learning (CSCL) environments was generated.
Resumo:
The buckling strength of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion for its intermediate spans. Recent research has developed a modified elastic lateral buckling moment equation to allow for lateral distortional buckling effects. However, it is limited to a uniform moment distribution condition that rarely exists in practice. Transverse loading introduces a non-uniform bending moment distribution, which is also often applied above or below the shear centre (load height). These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors to allow for these effects. But they were derived mostly based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The moment distribution and load height effects of transverse loading for LSBs, and the suitability of the current design modification factors to accommodate these effects for LSBs is not known. This paper presents the details of a research study based on finite element analyses on the elastic lateral buckling strength of simply supported LSBs subject to transverse loading. It discusses the suitability of the current steel design code modification factors, and provides suitable recommendations for simply supported LSBs subject to transverse loading.
Resumo:
The flexural capacity of of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is limited by lateral distortional buckling for intermediate spans, which is characterised by simultaneous lateral deflection, twist and web distortion. Recent research has developed suitable design rules for the member capacity of LSBs. However, they are limited to a uniform moment distribution that rarely exists in practice. Many steel design codes have adopted equivalent uniform moment distribution factors to accommodate the effect of non-uniform moment distributions in design. But they were derived mostly based on the data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The effect of moment distribution for LSBs, and the suitability of the current steel design code rules to include this effect for LSBs are not yet known. This paper presents the details of a research study based on finite element analyses of the lateral buckling strength of simply supported LSBs subject to moment gradient effects. It also presents the details of a number of LSB lateral buckling experiments undertaken to validate the results of finite element analyses. Finally, it discusses the suitability of the current design methods, and provides design recommendations for simply supported LSBs subject to moment gradient effects.
Resumo:
Reforms to the national research and research training system by the Commonwealth Government of Australia sought to effectively connect research conducted in universities to Australia's national innovation system. Research training has a key role in ensuring an adequate supply of highly skilled people for the national innovation system. During their studies, research students produce and disseminate a massive amount of new knowledge. Prior to this study, there was no research that examined the contribution of research training to Australia's national innovation system despite the existence of policy initiatives aiming to enhance this contribution. Given Australia's below average (but improving) innovation performance compared to other OECD countries, the inclusion of Finland and the United States provided further insights into the key research question. This study examined three obvious ways that research training contributes to the national innovation systems in the three countries: the international mobility and migration of research students and graduates, knowledge production and distribution by research students, and the impact of research training as advanced human capital formation on economic growth. Findings have informed the concept of a research training culture of innovation that aims to enhance the contribution of research training to Australia's national innovation system. Key features include internationally competitive research and research training environments; research training programs that equip students with economically-relevant knowledge and the capabilities required by employers operating in knowledge-based economies; attractive research careers in different sectors; a national commitment to R&D as indicated by high levels of gross and business R&D expenditure; high private and social rates of return from research training; and the horizontal coordination of key organisations that create policy for, and/or invest in research training.
Resumo:
The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR) that protects sensitive but unbalanced and/or distorted loads. The main aim of the DVR is to regulate the voltage at the load terminal irrespective of sag/swell, distortion, or unbalance in the supply voltage. In this paper, the DVR is operated in such a fashion that it does not supply or absorb any active power during the steady-state operation. Hence, a DC capacitor rather than a DC source can supply the voltage source inverter realizing the DVR. The proposed DVR operation is verified through extensive digital computer simulation studies.