988 resultados para Sun: magnetic fields


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oscillation amplitudes are generally smaller within magnetically active regions like sunspots and plage when compared to their surroundings. Such magnetic features, when viewed in spatially resolved power maps, appear as regions of suppressed power due to reductions in the oscillation amplitudes. Employing high spatial- and temporal-resolution observations from the Dunn Solar Telescope (DST) in New Mexico, we study the power suppression in a region of evolving magnetic fields adjacent to a pore. By utilizing wavelet analysis, we study for the first time how the oscillatory properties in this region change as the magnetic field evolves with time. Image sequences taken in the blue continuum, G-band, CaiiK, and H<i style="margin: 0px; padding: 0px; border: 0px; font-stretch: inherit; font-size: 18px; line-height: 27px; font-family: minion-pro, Georgia, &quot;Times New Roman&quot;, STIXGeneral, serif; vertical-align: baseline; color: rgb(51, 51, 51);"></i>filters were used in this study. It is observed that the suppression found in the chromosphere occupies a relatively larger area, confirming previous findings. Also, the suppression is extended to structures directly connected to the magnetic region, and is found to get enhanced as the magnetic field strength increased with time. The dependence of the suppression on the magnetic field strength is greater at longer periods and higher formation heights. Furthermore, the dominant periodicity in the chromosphere was found to be anti-correlated with increases in the magnetic field strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is the second in a series of studies working towards constructing a realistic, evolving, non-potential coronal model for the solar magnetic carpet. In the present study, the interaction of two magnetic elements is considered. Our objectives are to study magnetic energy build-up, storage and dissipation as a result of emergence, cancellation, and flyby of these magnetic elements. In the future these interactions will be the basic building blocks of more complicated simulations involving hundreds of elements. Each interaction is simulated in the presence of an overlying uniform magnetic field, which lies at various orientations with respect to the evolving magnetic elements. For these three small-scale interactions, the free energy stored in the field at the end of the simulation ranges from 0.22.11026 ergs, whilst the total energy dissipated ranges from 1.36.31026 ergs. For all cases, a stronger overlying field results in higher energy storage and dissipation. For the cancellation and emergence simulations, motion perpendicular to the overlying field results in the highest values. For the flyby simulations, motion parallel to the overlying field gives the highest values. In all cases, the free energy built up is sufficient to explain small-scale phenomena such as X-ray bright points or nanoflares. In addition, if scaled for the correct number of magnetic elements for the volume considered, the energy continually dissipated provides a significant fraction of the quiet Sun coronal heating budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies of the variation of geomagnetic activity over the past 140 years have quantified the "coronal source" magnetic flux F-s that leaves the solar atmosphere and enters the heliosphere and have shown that it has risen, on average, by an estimated 34% since 1963 and by 140% since 1900. This variation of open solar flux has been reproduced by Solanki et al. [2000] using a model which demonstrates how the open flux accumulates and decays, depending on the rate of flux emergence in active regions and on the length of the solar cycle. We here use a new technique to evaluate solar cycle length and find that it does vary in association with the rate of change of F-s in the way predicted. The long-term variation of the rate of flux emergence is found to be very similar in form to that in F-s, which may offer a potential explanation of why F-s appears to be a useful proxy for extrapolating solar total irradiance back in time. We also find that most of the variation of cosmic ray fluxes incident on Earth is explained by the strength of the heliospheric field (quantified by F-s) and use observations of the abundance of the isotope Be-10 (produced by cosmic rays and deposited in ice sheets) to study the decrease in F-s during the Maunder minimum. The interior motions at the base of the convection zone, where the solar dynamo is probably located, have recently been revealed using the helioseismology technique and found to exhibit a 1.3-year oscillation. This periodicity is here reported in observations of the interplanetary magnetic field and geomagnetic activity but is only present after 1940, When present, it shows a strong 22-year variation, peaking near the maximum of even-numbered sunspot cycles and showing minima at the peaks of odd-numbered cycles. We discuss the implications of these long-term solar and heliospheric variations for Earth's environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic reconnection facilitates the transfer of mass, energy, and momentum from the solar wind, through the Earth's magnetosphere and into the upper atmosphere. Recently, combined observations using both ground-based and satellite instruments have revealed much about how reconnection takes place. This new understanding has great signficance for systems which exploit, or operate within, the Earth's plasma environment, as well as for a wide variety of scientific studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 19952007), we show that the time of disappearance of the northern polar coronal hole (19981999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterised primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The magnetic cloud legs, which magnetically connect the flux rope to the Sun, are not recognisable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-magnetic cloud ICMEs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new model for the Sun's global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small- scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms, to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2:5 R, around 10 - 100 times less than that determined for typical HMI synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is presently observed, and hence a much higher cosmic ray flux at Earth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukemia incidence in children has increased worldwide in recent decades, particularly due to the rise in acute lymphoblastic leukemia. Studies have associated exposure to non-ionizing radiation generated by low frequency magnetic fields with childhood leukemia. The current article reviews the case-control studies published on this subject. Of 152 articles tracked in different databases, ten studies from North America, Asia, and Europe met the defined selection criteria, with patients diagnosed from 1960 to 2004. Methodological limitations were observed in these articles, including difficulties with the procedures for assessing exposure. An association may exist between exposure to low frequency magnetic fields and acute lymphoblastic leukemia in children, but this association is weak, preventing the observation of consistency in the findings. Future studies from a wider range of geographic regions should focus on the analysis of acute lymphoblastic leukemia, which is the subtype with the greatest impact on the increasing overall incidence of childhood leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims. We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods. As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results. The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is generated above r = 0.95 R(circle dot) at all latitudes. If the full pumping is also included, the polar toroidal fields are efficiently advected inwards, and the toroidal magnetic activity survives only at the observed latitudes near the equator. With regard to the parity of the magnetic field, only models that combine turbulent pumping with near-surface shear always converge to the dipolar parity. Conclusions. This result suggests that, under the Babcock-Leighton approach, the equartorward motion of the observed magnetic activity is governed by the latitudinal pumping of the toroidal magnetic field rather than by a large scale coherent meridional flow. Our results support the idea that the parity problem is related to the quadrupolar imprint of the meridional flow on the poloidal component of the magnetic field and the turbulent pumping positively contributes to wash out this imprint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields similar to mu G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) similar to 10 mu G over a comoving similar to 1 pc region are predicted at redshift z similar to 10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs similar to 10(-2) mu G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z similar to 10. In the collapse to a galaxy (comoving size similar to 30 kpc) at z similar to 10, the fields are amplified to similar to 10 mu G. This indicates that the MFs created immediately after the QHPT (10(-4) s), predicted by the fluctuation-dissipation theorem, could be the origin of the similar to mu G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation - dissipation theorem, predicts similar to 0.034 mu G fields over similar to 0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation- dissipation theorem are not completely random, microgauss fields over regions greater than or similar to 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in less than or similar to 10(9) years in high redshift galaxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of the electrical characteristics of technical HTS tapes are of the key importance in determining the design and operational features of superconducting power apparatuses as well as to understand the external factors which affect the superconducting performance. In this work we report the systematic measurements of the electric field versus current density, E-J relation of short samples for three commercial HTS tapes (BSCCO-2223 tapes, with and without steel reinforcement, and YBCO-coated conductor) at 77 K. In order to get sensitive and noiseless voltage signals the measurements were carried out with DC transport current and subjecting the broad surface tape to DC (0-300 mT) and AC (0-62 mT, 60 Hz) magnetic fields. The voltage is measured by a sensitive nanovoltmeter and the applied magnetic field is monitored by a Hall sensor placed on the tape broad surface. The comparison between the results obtained from the three tapes was done by fitting a power-law equation for currents in the vicinity of the critical current. For the current regime below the critical one a linear correlation of the electric field against the current density is observed. The BSCCO samples presented the same behavior, i.e., a decreasing of n-index with the increasing DC and AC magnetic field strength. Under AC field the decreasing slope of n-index is steeper as compared to DC field. The n-index curve for the YBCO tape showed similar behavior for AC field, however under DC field in the 0-390 mT range exhibited a slight decreasing of the n-index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frequency dependence of the interlayer conductivity of a layered Fermi liquid in a magnetic field that is tilted away from the normal to the layers is considered. For both quasi-one- and quasi-two-dimensional systems resonances occur when the frequency is a harmonic of the frequency at which the magnetic field causes the electrons to oscillate on the Fermi surface within the layers. The intensity of the different harmonic resonances varies significantly with the direction of the field. The resonances occur for both coherent and weakly incoherent interlayer transport and so their observation does not imply the existence of a three-dimensional Fermi surface. [S0163-1829(99)51240-X].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equipment used to measure magnetic fields and, electric currents in residences is described. The instrumentation consisted of current transformers, magnetic field probes and locally designed and, built signal conditioning modules. The data acquisition system was capable of unattended recording for extended time periods. The complete system was calibrated to verify its response to known physical inputs. (C) 2003 ISA-The Instrumentation Automation Society.