14 resultados para Sulfatação


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho relata um estudo de sulfatação, em escala laboratorial, com objetivo de propor um tratamento para a recuperação seletiva de determinados metais presentes em lodos galvânicos (LG). Os metais de interesse são cobre, zinco e níquel e o agente promotor da sulfatação é a pirita, obtida de rejeitos de carvão mineral. A particularidade deste tratamento é o emprego simultâneo de dois resíduos perigosos como matériasprimas. Estes resíduos são gerados em grande quantidade em sítios de extração de carvão (rejeito piritoso) e empresas galvânicas (lodo galvânico). Os resíduos foram caracterizados por fluorescência de raios X (XRF), distribuição granulométrica e percentual de umidade. A caracterização química apresentou lodos com alta concentração de cobre, maior do que 14% (base seca). Na etapa de sulfatação, o lodo galvânico foi misturado com o rejeito piritoso e os parâmetros avaliados foram: razão lodo galvânico/rejeito piritoso, temperatura de sulfatação e tempo de patamar. Depois da sulfatação, o produto da reação foi lixiviado com água, em temperatura ambiente, por 15 min. Nesta etapa hidrometalúrgica, os parâmetros variáveis foram tempo de lixiviação e concentração de sólidos na polpa.As condições que melhor refletem o compromisso de recuperar os metais de interesse e a viabilidade econômica do processo foram alcançados com a razão 1:0,4 lodo galvânico/rejeito piritoso, 90 min de patamar e 550ºC de temperatura de sulfatação, para a etapa pirometalúrgica e 15 min de lixiviação e 14g.L-1 de sólidos em polpa como condições hidrometalúrgicas. Estas condições propiciaram a recuperação de 60% de zinco, 49% de níquel e 50% de cobre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os óxidos de enxofre (SOx) são um dos maiores poluentes atmosféricos e um dos precursores da chuva ácida. Um levantamento feito na Petrobrás mostrou que cerca de 17% dos SOx emitidos numa refinaria são oriundos do processo de FCC. Com o avanço dos controles ambientais, traduzido numa legislação mais restritiva, a técnica de incorporação de aditivos para remoção de SOx em UFCCs apresenta-se como a alternativa de menor custo frente outras tecnologias de abate das emissões de SOx. No presente trabalho, foram estudados aditivos constituídos por compostos derivados de hidrotalcitas com a substituição parcial do magnésio e do alumínio por cobre e/ou manganês, sendo estes impregnados ou não por dióxido de cério. Estes aditivos foram submetidos a testes de desempenho em uma unidade multi-propósito acoplada a um micro-GC/TCD. Em todos os testes, a corrente gasosa para a etapa de adsorção oxidativa foi de 1700 ppm de SO2 e 1,5% O2 em He e, para a etapa de regeneração, 30% H2/He. No primeiro conjunto de testes, realizou-se uma adsorção a 720C de 10 min e regeneração com um patamar a 530C, seguido de um TPR até 800C. Observou-se que as amostras impregnadas com cério apresentaram o melhor desempenho na remoção de SO2, indicando que o cério pode ter um papel de promotor da oxidação de SO2 a SO3. Os resultados do TPR mostram que as amostras com cério e com manganês parecem apresentar menores temperaturas de redução dos sulfatos, apesar das maiores liberações de H2S serem identificadas nas amostras com cobre. No segundo conjunto de testes, a adsorção foi a 720C durante 35 min e a regeneração a 650C por 5 minutos em um patamar de 5 minutos, seguida de um TPR até 800C. Para os tempos de sulfatação curtos (5 e 10 min), os resultados confirmaram o efeito positivo que a incorporação de CeO2 apresenta sobre a adsorção oxidativa do SO2. Todavia, para tempos de reação maiores (35 min), não se observou uma correlação clara entre a composição química do catalisador e a quantidade total de SOx removida. Os aditivos foram ainda testados em ciclos de reação-regeneração em condições equivalentes ao segundo conjunto de testes descrito. De um modo geral, os aditivos que contêm cobre têm uma vida útil superior aos demais, possivelmente, pelo fato do cobre ter importante papel na regeneração do aditivo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, sulfated polysaccharides from marine algae have emerged as an important class of natural biopolymers with potential application in human and veterinary health care, while taking advantage of the absence of potential risk of contamination by animal viruses. Among these, fucans isolated from the cell walls of marine brown alga have been study due to their anticoagulant, antithrombotic, anti-inflammatory and antiviral activities. These biological effects of fucans have been found to depend on the degree of sulfation and molecular size of the polysaccharide chains. In the present study, we examined structural features of a fucan extracted from brown alga Dictyota menstrualis and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolytic digestion, followed by sequential acetone precipitation producing 5 fractions. Gel lectrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. Electrophoresis in agarose gel in three different buffers demonstrated that the fraction 2.0v have only one population of fucan. This compound was purify by exclusion molecular. It has shown composition of fucose, xilose, sulfate and uronic acid in molar ration of 1.0: 1.7: 1.1: 0.5 respectively. The effect of this heterofucan on the leukocyte migration was observed 6h after zymozan (mg/g) administration into the peritoneum. The heterofucan showed higher antimigratory activity, it decrease the migration of leukocyte in 83.77% to peritoneum. The results suggest that this fucan is a new antimigratory compound with potential pharmacological appications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a study on the production of biodiesel by esterification reaction of oleic acid with methanol using batch reactor and different catalysts based on CeO2 and WO3 and HZSM-5. Acid treatment was performed in order to increase the catalytic activity. Different characterization techniques were performed, among them X-ray diffraction (XRD), Thermogravimetric analysis TGA/DTA, Spectroscopy in the Region in Fourier Transform Infrared (FTIR) and X-ray fluorescence (XRF). The effects of independent variables: temperature, molar ratio of oil: alcohol and the amount of catalyst and their interactions on the dependent variable (conversion of oleic acid to the corresponding ester). Overall, through the results obtained in the characterization was observed that the applied treatments were efficient, however the XRF technique, indicated that tungsten oxide leaching could occur during the preparation of the materials. The treatments performed on HZSM-5 caused no significant changes in the structure indicating that the zeolite was quite resistant to the treatments used. It was evaluated using complete 23 factorial design. For the catalysts investigated, the best reaction conditions were obtained when using higher levels of the independent variables temperature and amount of catalyst. However, for the variable molar ratio the lowest level showed significant yields for most of the synthesized catalyst, obtaining maximum conversion to the OC (67.97%), OW (74.37%), HZSM-5 (61.16%) OC-OW 1 (75.93%), OC-OW 2 (82.57%), OC-OW 3 (79.15%), S/OC-OW 1 (86.90%), S/OC-OW 2 (91.04%), S/OC-OW 3 (88.60%), S/OC-OW/H 1 (92.34%), S/OC-OW/H 2 (100%) and S/OC-OW/H 3 (98.16%). According to the experimental design, the temperature has the biggest influence on the reaction variable for all the synthesized catalysts. Among the catalysts investigated S/OC-OW/H 2 e S/OC-OW/H 3 were more effective. Reuse tests showed that the catalyst activity decreased after each cycle, indicating that the regeneration process was effective. The leaching test indicated that the catalysts are heterogeneous in the evaluated operating range. The catalysts investigated showed themselves promising for the production of biodiesel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine algae are rich sources of various structural compounds which recently has been increasingly studied as a new source of bioactive substances. The alginate, as come as fucans, are considered the main acidic polysaccharides found in brown seaweed. This molecule consists a linear natural polysaccharide, non-sulfated, and presents monosaccharides: acid β-D-mannuronic (M) and α-L-guluronic acid (G); in a vast amount compositions and threads. Alginate has been widely applied in food and pharmaceutical industries because of its ability to retain water, forming films and gels as well as thickening, stabilizing and form emulsions. In this work we aimed to extract, structurally characterize, compare and analyze the possible pharmacological activities of native alginate molecule obtained from brown seaweed Dyctiopteris delicatula (DYN), and its chemically sulfated derivative (DYS). The alginate structure and composition molecule can be proven through chemical dosing, that showed low protein contamination and high sugar level, existence and separation of M and G blocks in the descending paper chromatography, infrared spectroscopy and nuclear magnetic resonance. Molecule sulfation was proven with sulphate dosage, resulting in 28.56% sulphate in molecule; electrophoresis, verify metachromasia with toluidine blue; and infrared spectroscopy, that showed a characteristic band at 1221cm-1 corresponding a sulfate group vibration. For the pharmacological activities the tests was: antioxidant activity, changes in cell function (MTT test) and anticoagulant test. In the antioxidant activity we observed that DYN showed better results in the kidnapping of hydroxyl radicals and ferric chelation compared to DYS, this had the best result in the total antioxidant capacity. Both showed similar activity in reducing power and the kidnapping radicals DPPH. In MTT test DYN and DYS had not proliferative and cytotoxic activity in fibroblast cells (3T3) and showed antiproliferative and cytotoxic activity in cancer cell lines HeLa and B16 melanoma. In anticoagulant assay DYN showed good activity in the intrinsic pathway of blood coagulation, and a small activity in the extrinsic pathway, in the other hand DYS showed only a very small activity in the extrinsic pathway, but cannot come to be regarded as an anticoagulant agent. From these results it can be concluded that the alginate was extracted and sulfated, revealing a potential compound to be used in the pharmaceutical industry as an anticoagulant agent, antioxidant and antitumor and the sulfation has not been conclusively important to performance in the tested pharmacological activities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, sulfated polysaccharides from marine algae have emerged as an important class of natural biopolymers with potential application in human and veterinary health care, while taking advantage of the absence of potential risk of contamination by animal viruses. Among these, fucans isolated from the cell walls of marine brown alga have been study due to their anticoagulant, antithrombotic, anti-inflammatory and antiviral activities. These biological effects of fucans have been found to depend on the degree of sulfation and molecular size of the polysaccharide chains. In the present study, we examined structural features of a fucan extracted from brown alga Dictyota menstrualis and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolytic digestion, followed by sequential acetone precipitation producing 5 fractions. Gel lectrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. Electrophoresis in agarose gel in three different buffers demonstrated that the fraction 2.0v have only one population of fucan. This compound was purify by exclusion molecular. It has shown composition of fucose, xilose, sulfate and uronic acid in molar ration of 1.0: 1.7: 1.1: 0.5 respectively. The effect of this heterofucan on the leukocyte migration was observed 6h after zymozan (mg/g) administration into the peritoneum. The heterofucan showed higher antimigratory activity, it decrease the migration of leukocyte in 83.77% to peritoneum. The results suggest that this fucan is a new antimigratory compound with potential pharmacological appications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents