8 resultados para Sulfamerazine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect on solubility and release of ternary complexes of sulfamerazine (SMR) with beta-(beta CD), methyl-(M beta CD) and hydroxypropyl-P-cyclodextrin (HP beta CD) using meglumine (MEG) as the ternary component. The combination of MEG with M beta CD resulted the best approach, with an increased effect (29-fold) of the aqueous solubility of SMR. The mode of inclusion was supported by 2D NMR, which indicated that real ternary complexes were formed between SMR, MEG and M beta CD or HP beta CD. Solid state analysis was performed using Fourier-transform infrared spectroscopy (FT IR), differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD), which demonstrated that different interactions occurred among SMR, MEG and M beta CD or HP beta CD in the ternary lyophilized systems. The ternary complexes with beta CD and M beta CD produced an additional retention effect on the release of SMR compared to the corresponding binary complexes, implying that they were clearly superior in terms of solubility and release modulation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of zinc hexacyanoferrate (ZnHCF) hybrid film on the surface of graphite-epoxy composite (GEC) electrodes was demonstrated by cyclic voltammetry. Surface morphology of the hybrid film was investigated by using scanning electron microscopy. The effect of the type of monovalent cations on the redox behaviour of hybrid film was also studied. This effect indicated that the radius of the hydrated cation mainly determines the ion permeability of the film.The electrochemical behavior of the substituted anilines (procaine and sulfamerazine) in 1 M KCl of the modified GEC electrode showed a decrease of the cathodic currents while increasing the concentration of these analytes. The developed sensor also showed excellent stability for long time usage, higher sensitivity and cost-effective fabrication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was the development and characterization of a biocompatible microemulsion (ME) containing soybean oil (O), phosphatidylcholine/sodium oleate/Eumulgin®HRE40 as the surfactant mixture (S) and water or buffer solution as the aqueous phase (W), for oral delivery of the poorly water-soluble drugs sulfamerazine (SMR) and indomethacin (INM). A wide range of combinations to obtain clear oil-in-water (o/w) ME was observed from pseudo-ternary phase diagrams, which was greater after the incorporation of both drugs, suggesting that they acted as stabilizers. Drug partition studies indicated a lower affinity of the drugs for the oil domain when they were ionized and with increased temperature, explained by the fact that both drugs were introduced inside the oil domain, determined by nuclear magnetic resonance. High concentrations of SMR and INM were able to be incorporated (22.0 and 62.3 mg/mL, respectively). The ME obtained presented an average droplet size of 100 nm and a negative surface charge. A significant increase in the release of SMR was observed with the ME with the highest percentage of O, because of the solubilizing properties of the ME. Also, a small retention effect was observed for INM, which may be explained by the differences in the partitioning properties of the drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3535-3543, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs