943 resultados para Subventricular Zone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia - SFRH/BD/42848/2008, através do Programa MIT_Portugal em Sistemas de Bioengenharia; projectos PTDC/SAUNEU/104415/2008 e Projecto ref. 96542 da Fundação Caloust Gulbenkian

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. © 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multi-potent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test the hypothesis on prolonged survival in glioblastoma cases with increased subventricular zone (SVZ) radiation dose. Sixty glioblastoma cases were previously treated with adjuvant radiotherapy and Temozolamide. Ipsilateral, contralateral and bilateral SVZs were contoured and their doses were retrospectively evaluated. Median follow-up, progression free survival (PFS) and overall survival (OS) were 24.5, 8.5 and 19.3 months respectively. Log-rank tests showed a statistically significant correlation between contralateral SVZ (cSVZ) dose > 59.2 Gy (75th percentile) and poor median PFS (10.37 [95% CI 8.37-13.53] vs 7.1 [95% CI 3.5-8.97] months, p = 0.009). cSVZ dose > 59.2 Gy was associated with poor OS in the subgroup with subtotal resection/biopsy (HR: 4.83 [95% CI 1.71-13.97], p = 0.004). High ipsilateral SVZ dose of > 62.25 Gy (75th percentile) was associated with poor PFS in both subgroups of high performance status (HR: 2.58 [95% CI 1.03-6.05], p = 0.044) and SVZ without tumoral contact (HR: 10.57 [95% CI 2.04-49], p = 0.008). The effect of high cSVZ dose on PFS lost its statistical significance in multivariate Cox regression analysis. We report contradictory results compared to previous publications. Changing the clinical practice based on retrospective studies which even do not indicate consistent results among each other will be dangerous. We need carefully designed prospective randomized studies to evaluate any impact of radiation to SVZ in glioblastoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian subventricular zone (SVZ) of the lateral wall of the forebrain ventricle retains a population of proliferating neuronal precursors throughout life. Neuronal precursors born in the postnatal and adult SVZ migrate to the olfactory bulb where they differentiate into interneurons. Here we tested the potential of mouse postnatal SVZ precursors in the environment of the embryonic brain: (i) a ubiquitous genetic marker, (ii) a neuron-specific transgene, and (iii) a lipophilic-dye were used to follow the fate of postnatal day 5–10 SVZ cells grafted into embryonic mouse brain ventricles at day 15 of gestation. Graft-derived cells were found at multiple levels of the neuraxis, including septum, thalamus, hypothalamus, and in large numbers in the midbrain inferior colliculus. We observed no integration into the cortex. Neuronal differentiation of graft derived cells was demonstrated by double-staining with neuron-specific β-tubulin antibodies, expression of the neuron-specific transgene, and the dendritic arbors revealed by the lipophilic dye. We conclude that postnatal SVZ cells can migrate through and differentiate into neurons within multiple embryonic brain regions other than the olfactory bulb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because neurogenesis persists in the adult mammalian brain and can be regulated by physiological and pathological events, we investigated its possible involvement in the brain's response to focal cerebral ischemia. Ischemia was induced by occlusion of the middle cerebral artery in the rat for 90 min, and proliferating cells were labeled with 5-bromo-2′-deoxyuridine-5′-monophosphate (BrdUrd) over 2-day periods before sacrificing animals 1, 2 or 3 weeks after ischemia. Ischemia increased the incorporation of BrdUrd into cells in two neuroproliferative regions—the subgranular zone of the dentate gyrus and the rostral subventricular zone. Both effects were bilateral, but that in the subgranular zone was more prominent on the ischemic side. Cells labeled with BrdUrd coexpressed the immature neuronal markers doublecortin and proliferating cell nuclear antigen but did not express the more mature cell markers NeuN and Hu, suggesting that they were nascent neurons. These results support a role for ischemia-induced neurogenesis in what may be adaptive processes that contribute to recovery after stroke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multipotent stem cells can self-renew and give rise to multiple cell types. One type of mammalian multipotent stem cells are neural stem cells (NSC)s, which can generate neurons, astrocytes and oligodendrocytes. NSCs are likely involved in learning and memory, but their exact role in cognitive function in the developing and adult brain is unclear. We have studied properties of NSCs in fragile X syndrome (FXS), which is the most common form of inherited mental retardation. FXS is caused by the lack of functional fragile X mental retardation protein (FMRP). FMRP is involved in the regulation of postsynaptic protein synthesis in a group I metabotropic glutamate receptor 5 (mGluR5)-dependent manner. In the absence of functional FMRP, the formation of functional synapses is impaired in the forebrain which results in alterations in synaptic plasticity. In our studies, we found that FMRP-deficient NSCs generated more neurons and less glia than control NSCs. The newborn neurons derived from FMRP-deficient NSCs showed an abnormally immature morphology. Furthermore, FMRP-deficient NSCs exhibited aberrant oscillatory Ca2+ responses to glutamate, which were specifically abolished by an antagonist of the mGluR5 receptor. The data suggested alterations in glutamatergic differentiation of FMRP-deficient NSCs and were further supported by an accumulation of cells committed to glutamatergic lineage in the subventricular zone of the embryonic Fmr1-knockout (Fmr1-KO) neocortex. Postnatally, the aberrant cells likely contributed to abnormal formation of the neocortex. The findings suggested a defect in the differentiation of distinct glutamatergic mGluR5 responsive cells in the absence of functional FMRP. Furthermore, we found that in the early postnatal Fmr1-KO mouse brain, the expression of mRNA for regulator of G-protein signalling-4 (RGS4) was decreased which was in line with disturbed G-protein signalling in NSCs lacking FMRP. Brain derived neurotrophic factor (BDNF) promotes neuronal differentiation of NSCs as the absence of FMRP was shown to do. This led us to study the effect of impaired BDNF/TrkB receptor signaling on NSCs by overexpression of TrkB.T1 receptor isoform. We showed that changes in the relative expression levels of the full-length and truncated TrkB isoforms influenced the replication capacity of NSCs. After the differentiation, the overexpression of TrkB.T1 increased neuronal turnover. To summarize, FMRP and TrkB signaling are involved in normal differentiation of NSCs in the developing brain. Since NSCs might have potential for therapeutic interventions in a variety of neurological disorders, our findings may be useful in the design of pharmacological interventions in neurological disorders of learning and memory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. Methods: Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. Results: When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. Conclusions: We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.