Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus.


Autoria(s): Kelava I.; Reillo I.; Murayama A.Y.; Kalinka A.T.; Stenzel D.; Tomancak P.; Matsuzaki F.; Lebrand C.; Sasaki E.; Schwamborn J.C.; Okano H.; Huttner W.B.; Borrell V.
Data(s)

2012

Resumo

Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type.

Identificador

https://serval.unil.ch/?id=serval:BIB_79BF58CA4CC6

isbn:1460-2199 (Electronic)

pmid:22114084

doi:10.1093/cercor/bhr301

isiid:000299124400022

http://my.unil.ch/serval/document/BIB_79BF58CA4CC6.pdf

http://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:ch:serval-BIB_79BF58CA4CC61

Idioma(s)

en

Direitos

info:eu-repo/semantics/openAccess

Fonte

Cerebral Cortex, vol. 22, no. 2, pp. 469-481

Palavras-Chave #brain evolution; cell cycle; gyrencephaly; marmoset; OSVZ
Tipo

info:eu-repo/semantics/article

article