992 resultados para Structural Diversity of Antimicrobial Peptides
Resumo:
The skin secretion of the North American pickerel frog (Rana palustris) has long been known to have pronounced noxious/toxic properties and to be highly effective in defence against predators and against other sympatric amphibians. As it consists largely of a complex mixture of peptides, it has been subjected to systematic peptidomic study but there has been little focus on molecular cloning of peptide-encoding cDNAs and by deduction, the biosynthetic precursors that they encode. Here, we demonstrate that the cDNAs encoding the five major structural families of antimicrobial peptides can be elucidated by a single step “shotgun” cloning approach using a cDNA library constructed from the source material of the peptidomic studies—the defensive skin secretion itself. Using a degenerate primer pool designed to a highly conserved nucleic acid sequence 5' to the initiation codon of known antimicrobial peptide precursor transcripts, we amplified cDNA sequences representing five major classes of antimicrobial peptides, such as esculentins, brevinins, ranatuerins, palustrins and temporins. Bioinformatic comparisons of precursor open-reading frames and nucleic acid sequences revealed high degrees of structural similarities between analogous peptides of R. palustris and the Chinese bamboo odorous frog, Rana versabilis. This approach thus constitutes a robust technique that can be used either alone or ideally, in parallel with peptidomic analysis of skin secretion, to rapidly extract primary structural information on amphibian skin secretion peptides and their biosynthetic precursors.
Resumo:
Antimicrobial peptides (AMPs) are gene encoded, small sized, generally cationic, amphiphathic peptides characterized by antimicrobial activity against bacteria, fungi, viruses and other pathogens. They are a major component of the innate immune defense system of almost all living organisms, ranging from bacteria to humans and represent the first line of defense against the invading microbial pathogens (Boman, 1995; Zasloff, 2002). Antimicrobial peptides represent a heterogeneous group displaying multiple modes of action that are determined by the sequence and concentration of peptides. Their remarkable specificity for prokaryotes with low toxicity for eukaryotic cells has favored their investigation and exploitation as new antibiotics
Resumo:
Antimicrobial peptides secreted by the skin of many amphibians play an important role in innate immunity. From two skin cDNA libraries of two individuals of the Chinese red belly toad (Bombina maxima), we identified 56 different antimicrobial peptide cDNA sequences, each of which encodes a precursor peptide that can give rise to two kinds of antimicrobial peptides, maximin and maximin H. Among these cDNA, we found that the mean number of nucleotide substitution per non-synonymous site in both the maximin and maximin H domains significantly exceed the mean number of nucleotide substitution per synonymous site, whereas the same pattern was not observed in other structural regions, such as the signal and propiece peptide regions, suggesting that these antimicrobial peptide genes have been experiencing rapid diversification driven by Darwinian selection. We cloned and sequenced seven genes amplified from skin or liver genomic DNA. These genes have three exons and share the same gene structure, in which both maximin and maximin H are encoded by the third exon. This suggests that alternative splicing and somatic recombination are less likely to play a role in creating the diversity of maximins and maximin Hs. The gene trees based on different domain regions revealed that domain shuffling or gene conversion among these genes might have happened frequently.
Resumo:
The crystal structures of five model peptides Piv-Pro-Gly-NHMe (1), Piv-Pro-beta Gly-NHMe (2), Piv-Pro-beta Gly-OMe (3), Piv-Pro-delta Ava-OMe (4) and Boc-Pro-gamma Abu-OH (5) are described (Piv:pivaloyl; NHMe: N-methylamide; beta Gly:beta-glycine; OMe:O-methyl ester; delta Ava:delta-aminovaleric acid; gamma Abu:gamma-aminobutyric acid). A comparison of the structures of peptides 1 and 2 illustrates the dramatic consequences upon backbone homologation in short sequences. 1 adopts a type II beta-turn conformation in the solid state, while in 2, the molecule adopts an open conformation with the beta-residue being fully extended. Piv-Pro-beta Gly-OMe (3), which differs from 2 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the solid state. In peptide 4, the observed conformation resembles that determined for 2 and 3, with the delta Ava residue being fully extended. In peptide 5, the molecule undergoes a chain reversal, revealing a beta-turn mimetic structure stabilized by a C-H center dot center dot center dot O hydrogen bond.
Resumo:
Backbone alkylation has been shown to result in a dramatic reduction in the conformational space that is sterically accessible to a-amino acid residues in peptides. By extension, the presence of geminal dialkyl substituents at backbone atoms also restricts available conformational space for beta and ? residues. Five peptides containing the achiral beta 2,2-disubstituted beta-amino acid residue, 1-(aminomethyl)cyclohexanecarboxylic acid (beta 2,2Ac6c), have been structurally characterized in crystals by X-ray diffraction. The tripeptide Boc-Aib-beta 2,2Ac6c-Aib-OMe (1) adopts a novel fold stabilized by two intramolecular H-bonds (C11 and C9) of opposite directionality. The tetrapeptide Boc-Aib-beta 2,2Ac6c]2-OMe (2) and pentapeptide Boc-Aib-beta 2,2Ac6c]2-Aib-OMe (3) form short stretches of a hybrid a beta C11 helix stabilized by two and three intramolecular H-bonds, respectively. The structure of the dipeptide Boc-Aib-beta 2,2Ac6c-OMe (5) does not reveal any intramolecular H-bond. The aggregation pattern in the crystal provides an example of an extended conformation of the beta 2,2Ac6c residue, forming a polar sheet like H-bond. The protected derivative Ac-beta 2,2Ac6c-NHMe (4) adopts a locally folded gauche conformation about the C beta?Ca bonds (?=-55.7 degrees). Of the seven examples of beta 2,2Ac6c residues reported here, six adopt gauche conformations, a feature which promotes local folding when incorporated into peptides. A comparison between the conformational properties of beta 2,2Ac6c and beta 3,3Ac6c residues, in peptides, is presented. Backbone torsional parameters of H-bonded a beta/beta a turns are derived from the structures presented in this study and earlier reports.
Resumo:
There are around 27 species of Amolops amphibian distributed in South-east of Asia. Seven antimicrobial peptides (AMPs) belonging to two different families were purified from skin of rufous-spotted torrent frog, Amolops loloensis, and designated brevinins
Resumo:
The hornet possesses highly toxic venom, which is rich in toxin, enzymes and biologically active peptides. Many bioactive substances were identified from wasp venom. Two families of antimicrobial peptides were purified and characterized from the venom of
Resumo:
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Guizhou region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the Yunnan frog, Rana pleuraden. Members
Resumo:
Amphibian skin secretions are rich in antimicrobial peptides acting as important components of innate defense system against invading microorganisms. A novel type of peptide, designated as maximin S, was deduced by random sequencing of 793 clones from a constructed Bombina maxima skin cDNA library. The putative primary structures of maximin S peptides can be grouped into five species, in which maximin S I has 14 amino acid residues and the rest of maximin S peptides (S2-S5) all have 18 amino acid residues. Unlike most of the amphibian antimicrobial peptides so far identified, the newly characterized four maximin S precursors are composed of maximin S I and different combinations of tandem repeated maximin S2-S5 linked by internal peptides. Except maximin S I, the predicted secondary structures of maximin S2-S5 show a similar amphipathic alpha-helical structure. MALDI-TOF mass spectrometry analysis of partially isolated skin secretions of the toad indicates that most of the deduced maximin S peptides are expressed. Two deduced maximin S peptides (S1, S4) were synthesized and their antimicrobial activities were tested. Maximin S4 only had an antibiotic activity against mycoplasma and had no antibacterial or antifungal activity toward tested strains. Maximin S1 had no activity under the same conditions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Sichuan region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the rufous-spotted torrent frog, Amolops loloensis. Members of the new peptide family named amolopins are composed of 18 amino acids with a unique sequence, for example, NILSSIVNGINRALSFFG. By BLAST search, amolopins did no show similarity to any known peptides. Among the tested microorganisms, native and synthetic peptides only showed antimicrobial activities against Staphylococcus aureus ATCC2592 and Bacillus pumilus, no effects on other microorganisms. The CD spectroscopy showed that it adopted a structure of random combined with beta-sheet in water, Tris-HCl or Tris-HCl-SDS. Several cDNAs encoding amolopins were cloned from the skin cDNA library of A. loloensis. The precursors of amolopin are composed of 62 amino acid residues including predicted signal peptides, acidic propieces, and mature antimicrobial peptides. The preproregion of amolopin precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature amolopins are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
We reported here four structures of lanthanide-amino acid complexes obtained under near physiological pH conditions and their individual formula can be described as [Tb-2(DL-Cys)(4)(H2O)(8)]Cl-2 (1), [Eu-4(mu(3)-OH)(4)(L-Asp)(2)(L-HAsp)(3)(H2O)(7)] Cl center dot 11.5H(2)O (2), [Eu-8-(L-HVal) (16)(H2O)(32)]Cl-24 center dot 12.5H(2)O (3), and [Tb-2(DL-HVal)(4)(H2O)(8)]Cl-6 center dot 2H(2)O (4). These complexes showed diverse structures and have shown potential application in DNA detection. We studied the interactions of the complexes with five single-stranded DNA and found different fluorescence enhancement, binding affinity and binding stoichiometry when the complexes are bound to DNA.
Resumo:
Penaeid shrimp, as an invertebrate, relies on the innate immunity to oppose the microbial invaders. Antimicrobial peptides (AMP) are an integral component of the innate immune system in most organisms and function as an early first line of defense against pathogens, but the knowledge about the pathways to regulate the shrimp AMP gene expression is still absent up to date. In the current study, a Relish homolog (FcRelish) was cloned from Chinese shrimp Fenneropenaeus chinensis. The full length cDNA of FcRelish consists of 2157 bp, including 1512 bp open reading frame, encoding 504 amino acids. The predicted molecular weight of FcRelish is 57 kDa, and the theoretical PI is 7.00. Spatial expression profiles showed that FcRelish had the highest expression levels in the hemocytes and lymphoid organ. Both Vibrio anguillarium and Micrococcus lysodeikticus stimulation to shrimp can affect the transcription profile of FcRelish. Silencing of FcRelish through DsRNA interference can greatly change the transcription profile of AMP. Therefore, we suggest that FcRelish identified in the present study is closely related to the transcription of AMP, and then we inferred that Imd pathway might exist in shrimp. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating “shotgun” cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog – the Fujian large-headed frog, Limnonectes fujianensis – and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 µM) and are devoid of haemolytic activity at concentrations up to 160 µM. Thus the “shotgun” cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data