995 resultados para Strontium stannate titanate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium stannate titanate Sr(Sn, Ti)O3 is a solid solution between strontium stannate (SrSnO3) and strontium titanate (SrTiO3). In the present study, it was synthesized at low temperature by the polymeric precursor method, derived from the Pechini process. The powders were calcined in oxygen atmosphere in order to eliminate organic matter and to decrease the amount of SrCO3 formed during the synthesis. The powders were annealed at different temperatures to crystallize the samples into perovskites-type structures. All the compositions were studied by thermogravimetry (TG) and differential thermal analysis (DTA), infrared spectroscopy (IR) and X-ray diffraction (XRD). The lattice former, Ti4+ and Sn4+, had a meaningful influence in the mass loss, without changing the profile of the TG curves. On the other hand, DTA curves were strongly modified with the Ti4+:Sn4+ proportion in the system indicating that intermediate compounds may be formed during the synthesis being eliminated at different temperature ranges, while SrCO3 elimination occurs at higher temperature as shown by XRD and IR spectra. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Niobium-modified lead zirconate stannate titanate antiferroelectric thin films with the chemical composition of (Pb0.99Nb0.02)(Zr0.57Sn0.38Ti0.05)0.98O3 were deposited by pulsed excimer laser ablation technique on Pt-coated Si substrates. Field-induced phase transition from antiferroelectric to ferroelectric properties was studied at different fields as a function of temperature. The field forced ferroelectric phase transition was elucidated by the presence of double-polarization hysteresis and double-butterfly characteristics from polarization versus applied electric field and capacitance and voltage measurements, respectively. The measured forward and reverse switching fields were 25 kV/cm and 77 kV/cm, respectively. The measured dielectric constant and dissipation factor were 540 and 0.001 at 100 kHz, respectively, at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perovskite type oxides have been intensively studied due to their interesting optical, electrical, and catalytic properties. Among perovskites the alkaline earth stannates stand out, being strontium stannates (SrSnO3) the most important material in ceramic technology among them due to their wide application as dielectric component. SrSnO3 has also been applied as stable capacitor and humidity sensor. In the present work, SrSnO3:Cu was synthesized by polymeric precursor method and heat treated at 700, 800, and 900 A degrees C for 4 h. After that, the material was characterized by thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared spectroscopy, and UV-vis spectroscopy. Results indicated three thermal decomposition steps and confirmed the presence of strontium carbonate and Cu2+ reduction to Cu+ at higher dopant amounts. XRD patterns indicated that the perovskite crystallization started at 700 A degrees C with strontiatite (SrCO3) and cassiterite (SnO2) as intermediate phases, disappearing at higher temperatures. The amount of secondary phase was reduced with the increase in the Cu concentration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strontium titanate nanocubes with an average edge length of 150mm have been successfully synthesized from a simple hydrothermal system. Characterization techniques such as X-ray powder diffraction analysis, scanning electron microscopy and energy-dispersive analysis of X-rays were used to investigate the products. The results showed that as-prepared powders are pure SrTiO3 with cubic shape, which consists with the growth habit of its intrinsic crystal structure. These uniform nanocubes with high crystallinity will exhibit superior physical properties in the practical applications. Furthermore, during the experimental process, it has been found that the dilute acid washing process is very important to obtain high pure SrTiO3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Artificial superlattices of SrTiO3 and BaZrO3 were grown epitaxially with different periodicities on SrRuO3 coated (00 1) SrTiO3 substrates by pulsed excimer laser ablation. Superlattices were structurally characterized by X-Ray theta-2 theta diffraction data. Electrical characterization was done in metal-insulation-metal configuration. Capacitance-voltage measurements showed limited amount of tunability. The DC field induced tunability has been observed to be sensitive to the periodicity of the superlattices, hence the effective strain present in the layers. Hysteretic behaviour in capacitance-voltage (C-V) and polarization versus electric field (P-E) results from the superlattices also indicate the sensitivity of the interfaces. Interfacial strain is supposed to be the most probable cause for such a behaviour which is also manifested in the variation of dielectric constant with individual layer thicknesses. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Raman spectrum of strontium titanate has been recorded using λ 4358 of mercury as exciter. The observed spectrum consists of 7 Raman lines, one of which is of low frequency, as expected from the recent theory of Cochran. 6 of these Raman lines have been interpreted as the first order spectrum arising from a small deviation of the cubic strontium titanate from its idealized symmetry. It has been shown that one normal mode of SrTiO3 neglected by J.T. Last, will be really active in infrared absorption in the region of 440 cm-1 and that it has to be taken into account in the interpretation of the infrared spectra of titanates. The four vibrational modes of the unit cell of SrTiO3 correspond to frequencies of 90, 335, 441 and 620 cm-1 observed in Raman effect. The large width of the Raman lines and the additional lines at 256 cm-1 and 726 cm-1 have been attributed to a splitting of the longitudinal and transverse optical modes. With the observed frequencies it has been found possible to account for in a satisfactory manner the specific heat of SrTiO3 in the range 54·84° K to 1800° K.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polycrystalline strontium titanate (SrTiO3) films were prepared by a pulsed laser deposition technique on p-type silicon and platinum-coated silicon substrates. The films exhibited good structural and dielectric properties which were sensitive to the processing conditions. The small signal dielectric constant and dissipation factor at a frequency of 100 kHz were about 225 and 0.03 respectively. The capacitance-voltage (C-V) characteristics in metal-insulator-semiconductor structures exhibited anomalous frequency dispersion behavior and a hysteresis effect. The hysteresis in the C-V curve was found to be about 1 V and of a charge injection type. The density of interface states was about 1.79 x 10(12) cm(-2). The charge storage density was found to be 40 fC mu m(-2) at an applied electric field of 200 kV cm(-1). Studies on current-voltage characteristics indicated an ohmic nature at lower voltages and space charge conduction at higher voltages. The films also exhibited excellent time-dependent dielectric breakdown behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polycrystalline SrTiO3 films were prepared by pulsed excimer laser ablation on Si and Pt coated Si substrates. Several growth parameters were varied including ablation fluence, pressure, and substrate temperature. The structural studies indicated the presence of [100] and [110] oriented growth after annealing by rapid thermal annealing at 600-degrees-C for 60 s. Deposition at either lower pressures or at higher energy densities encouraged film growth with slightly preferred orientation. The scanning electron microscopy studies showed the absence of any significant particulates on the film surface. Dielectric studies indicated a dielectric constant of 225, a capacitance density of 3.2 fF/mum2, and a charge density of 40 fC/mum for films of 1000 nm thick. The dc conductivity studies on these films suggested a bulk limited space charge conduction in the high field regime, while the low electric fields induced an ohmic conduction. Brief time dependent dielectric breakdown studies on these films, under a field of 250 kV/cm for 2 h, did not exhibit any breakdown, indicating good dielectric strength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin films of barium strontium titanate (BST) including BaTiO3 and SrTiO3 end members were deposited using the metallo-organic decomposition (MOD) technique. Processing parameters such as nonstoichiometry, annealing temperature and time, film thickness and doping concentration were correlated with the structural and electrical properties of the films. A random polycrystalline structure was observed for all MOD films under the processing conditions in this study. The microstructures of the films showed multi-grains structure through the film thickness. A dielectric constant of 563 was observed for (Ba0.7Sr0.3)TiO3 films rapid thermal annealed at 750 degrees C for 60 s. The dielectric constant increased with annealing temperature and film thickness, while the dielectric constant could reach the bulk values for thicknesses as thin as similar to 0.3 mu m. Nonstoichiometry and doping in the films resulted in a lowering of the dielectric constant. For near-stoichiometric films, a small dielectric dispersion obeying the Curie-von Schweidler type dielectric response was observed. This behavior may be attributed to the presence of the high density of disordered grain boundaries. All MOD processed films showed trap-distributed space-charge limited conduction (SCLC) behavior with slope of similar to 7.5-10 regardless of the chemistry and processing parameter due to the presence of main boundaries through the film thickness. The grain boundaries masked the effect of donor-doping, so that all films showed distributed-trap SCLC behavior without discrete-traps. Donor-doping could significantly improve the time-dependent dielectric breakdown behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping. From the results of charge storage density, leakage current and time-dependent dielectric breakdown behavior, BST thin films are found to be promising candidates for 64 and 256Mb ULSI DRAM applications. (C) 1997 Elsevier Science S.A.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin films of (Ba0.5Sr0.5)TiO3 (BST) with different concentrations of Al doping were grown using a pulsed laser deposition technique. dc leakage properties were studied as a function of Al doping level and compared to that of undoped BST films. With an initial Al doping level of 0.1 at. % which substitutes Ti in the lattice site, the films showed a decrease in the leakage current, however, for 1 at. % Al doping level the leakage current was found to be relatively higher. Current time measurements at elevated temperatures on 1 at. % Al doped BST films revealed space-charge transient type characteristics. A complete analysis of the transient characteristics was carried out to identify the charge transport process through variation of applied electric field and ambient temperature. The result revealed a very low mobility process comparable to ionic motion, and was found responsible for the observed feature. Calculation from ionic diffusivity and charge transport revealed a conduction process associated with an activation energy of around 1 eV. The low mobility charge carriers were identified as oxygen vacancies in motion under the application of electric field. Thus a comprehensive understanding of the charge transport process in highly acceptor doped BST was developed and it was conclusive that the excess of oxygen vacancies created by intentional Al doping give rise to space-charge transient type characteristics. © 2001 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strontium modified barium zirconium titanate with general formula Ba1-xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV-visible spectroscopy and found that the optical band gap increases with Sr concentration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Schottky barrier heights of various metals on the high permitivity oxides tantalum pentoxide, barium strontium titanate, lead zirconate titanate, and strontium bismuth tantalate have been calculated as a function of the metal work function. It is found that these oxides have a dimensionless Schottky barrier pinning factor S of 0.28-0.4 and not close to 1 because S is controlled by Ti-O-type bonds not Sr-O-type bonds, as assumed in earlier work. The band offsets on silicon are asymmetric with a much smaller offset at the conduction band, so that Ta2O5 and barium strontium titanate are relatively poor barriers to electrons on Si. © 1999 American Institute of Physics.