997 resultados para Strain-gauge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diaphragm-type pressure transducer with a sputtered platinum film strain gauge (sensing film) has been designed and fabricated. The various steps followed to prepare thin film strain gauges on the diaphragm are described. M-bond 450 adhesive (Measurements Group, USA) has been employed as the insulating layer. A detailed procedure to cure this layer is given. A d.c. sputtering method is employed to prepare the platinum films. This paper also includes details of the strain gauge pattern and its location on the diaphragm. A description of the output characteristics and overall behaviour of the platinum thin film pressure transducer is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A steel frame is designed to measure the existing prestressing force in the concrete beams and slabs when embedded inside the concrete members. The steel frame is designed to work on the principles of a vibrating wire strain gauge and in the present study is referred to as a vibrating beam strain gauge (VBSG). The existing strain in the VBSG is evaluated using both frequency data on the stretched member and static strain corresponding to a fixed static load, measured using electrical strain gauges. The evaluated strain in the VBSG corresponds to the existing stain in the concrete surrounding the prestressing strands. The crack reopening load method is used to compute the existing prestressing force in the concrete members and is then compared with the existing prestressing force obtained from the VBSG at that section. Digital image correlation based surface deformation and change in neutral axis monitored by putting electrical strain gauges across the cross section, are used to compute the crack reopening load accurately. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT tecniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 degrees C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n=5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 mu epsilon) and point D the highest (442.77 mu epsilon). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to investigate the level of microstrain that is exerted during polymerization of acrylic resins used for splinting during implant impressions. Material and Methods: Two acrylic resins (GC Pattern Resin, Duralay II) and square transfer coping splinting methods were evaluated by means of strain gauge analysis. Two implants were embedded in a polyurethane block, and the abutments were positioned. Sixty specimens were prepared using two square transfer Copings that were rigidly connected to each other using the acrylic resins. The specimens were randomly divided into three groups of 20 each for the splinting methods: Method 1 was a one-piece method; in method 2, the splint was separated and reconnected after 17 minutes; and in method 3, the splint was separated and reconnected after 24 hours. In each group, half the specimens were splinted with GC Pattern Resin and the other half were splinted with Duralay II. Three microstrain measurements were performed by four strain gauges placed on the upper surface of the polyurethane blocks at 5 hours after resin polymerization for all groups. The data were analyzed statistically. Results: Both resin type and splinting method significantly affected microstrain. interaction terms were also significant. Method 1 in combination with Duralay II produced significantly higher microstrain (1,962.1 mu epsilon) than the other methods with this material (method 2: 241.1 mu epsilon; method 3: 181.5 mu epsilon). No significant difference was found between splinting methods in combination with GC Pattern Resin (method 1: 173.8 mu epsilon; method 2: 112.6 mu epsilon; method 3: 105.4 mu epsilon). Conclusions: Because of the high microstrain generated, Duralay II should not be used for one-piece acrylic resin splinting, and separation and reconnection are suggested. For GC Pattern Resin, variations in splinting methods did not significantly affect the microstrain created. Int J Oral Maxillofac Implants 2012;27:341-345

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study investigated the effect of porcelain firing on the misfit of implant-supported frameworks and analyzed the influence of preheat treatment on the dimensional alterations.Materials and Methods: Four external-hex cylindrical implants were placed in polyurethane block. Ten frameworks of screw-retained implant-supported prostheses were cast in Pd-Ag using 2 procedures: (1) control group (CG, n = 5): cast in segments and laser welded; and test group (TG, n = 5): cast in segments, preheated, and laser welded. All samples were subjected to firing to simulate porcelain veneering firing. Strain gauges were bonded around the implants, and microstrain values (mu epsilon = 10(-6)epsilon) were recorded after welding (M1), oxidation cycle (M2), and glaze firing (M3). Data were statistically analyzed (2-way analysis of variance, Bonferroni, alpha = 0.05).Results: The microstrain value in the CG at M3 (475.2 mu epsilon) was significantly different from the values observed at M1 (355.6 mu epsilon) and M2 (413.9 mu epsilon). The values at M2 and M3 in the CG were not statistically different. Microstrain values recorded at different moments (M1: 361.6 mu epsilon/M2: 335.3 mu epsilon/M3: 307.2 mu epsilon) did not show significant difference.Conclusions: The framework misfit deteriorates during firing cycles of porcelain veneering. Metal distortion after porcelain veneering could be controlled by preheat treatment. (Implant Dent 2012;21:225-229)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The present study was designed to analyze strain distributions caused by varying the fixture-abutment design and fixture alignment.Materials and Methods: Three implants of external, internal hexagon, and Morse taper were embedded in the center of each polyurethane block in straight placement and offset placement. Four strain gauges (SGs) were bonded on the surface of polyurethane block, which was designated SG1 placed mesially adjacent to implant A, SG2 and SG3 were placed mesially and distally adjacent to the implant B and SG4 was placed distally adjacent to the implant C. The 30 superstructures' occlusal screws were tightened onto the Microunit abutments with a torque of 10 N cm using the manufacturers' manual torque-controlling device.Results: There were statistically significant differences in prosthetic connection (P value = 0.0074 < 0.5). There were no statistically significant differences in placement configuration/alignment (P value = 0.7812 > 0.5).Conclusion: The results showed fundamental differences in both conditions. There was no evidence that there was any advantage to offset implant placement in reducing the strain around implants. The results also revealed that the internal hexagon and Morse taper joints did not reduce the microstrain around implants. (Implant Dent 2011; 20:e24-e32)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this in vitro study was to quantify strain development during axial and nonaxial loading using strain gauge analysis for three-element implant-supported FPDs, varying the arrangement of implants: straight line (L) and offset (O). Materials and Methods: Three Morse taper implants arranged in a straight line and three implants arranged in an offset configuration were inserted into two polyurethane blocks. Microunit abutments were screwed onto the implants, applying a 20 Ncm torque. Plastic copings were screwed onto the abutments, which received standard wax patterns cast in Co-Cr alloy (n = 10). Four strain gauges were bonded onto the surface of each block tangential to the implants. The occlusal screws of the superstructure were tightened onto microunit abutments using 10 Ncm and then axial and nonaxial loading of 30 Kg was applied for 10 seconds on the center of each implant and at 1 and 2 mm from the implants, totaling nine load application points. The microdeformations determined at the nine points were recorded by four strain gauges, and the same procedure was performed for all of the frameworks. Three loadings were made per load application point. The magnitude of microstrain on each strain gauge was recorded in units of microstrain (mu). The data were analyzed statistically by two-way ANOVA and Tukey's test (p < 0.05). Results: The configuration factor was statistically significant (p= 0.0004), but the load factor (p= 0.2420) and the interaction between the two factors were not significant (p= 0.5494). Tukey's test revealed differences between axial offset (mu) (183.2 +/- 93.64) and axial straight line (285.3 +/- 61.04) and differences between nonaxial 1 mm offset (201.0 +/- 50.24) and nonaxial 1 mm straight line (315.8 +/- 59.28). Conclusion: There was evidence that offset placement is capable of reducing the strain around an implant. In addition, the type of loading, axial force or nonaxial, did not have an influence until 2 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a strain gauge-based sensor used for measuring finger force. The theory, design, and sensor construction details are presented. It was constructed using metallic strain gauges and a carefully designed structure which has a protection de-vice that impedes the sensor damage when forces higher than 100 N are applied. Its dimensions are suitable for measuring thumb force, but the same design can be used for constructing smaller sensors for other fingers. It is rugged, presents linear response, good repeatability, resolution of 0.3 N, low hysteresis, and sensitivity of 0.12 V/N. It can be useful in rehabilitation engineering, biomechanics, robotics, and medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 με) and point D the highest (442.77 με). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.