918 resultados para Stochastic mixed integer programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a scheme to generate clusters submodels with stage ordering from a (symmetric or a nonsymmetric one) multistage stochastic mixed integer optimization model using break stage. We consider a stochastic model in compact representation and MPS format with a known scenario tree. The cluster submodels are built by storing first the 0-1 the variables, stage by stage, and then the continuous ones, also stage by stage. A C++ experimental code has been implemented for reordering the stochastic model as well as the cluster decomposition after the relaxation of the non-anticipativiy constraints until the so-called breakstage. The computational experience shows better performance of the stage ordering in terms of elapsed time in a randomly generated testbed of multistage stochastic mixed integer problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Branch-and-cut” algorithm is one of the most efficient exact approaches to solve mixed integer programs. This algorithm combines the advantages of a pure branch-and-bound approach and cutting planes scheme. Branch-and-cut algorithm computes the linear programming relaxation of the problem at each node of the search tree which is improved by the use of cuts, i.e. by the inclusion of valid inequalities. It should be taken into account that selection of strongest cuts is crucial for their effective use in branch-and-cut algorithm. In this thesis, we focus on the derivation and use of cutting planes to solve general mixed integer problems, and in particular inventory problems combined with other problems such as distribution, supplier selection, vehicle routing, etc. In order to achieve this goal, we first consider substructures (relaxations) of such problems which are obtained by the coherent loss of information. The polyhedral structure of those simpler mixed integer sets is studied to derive strong valid inequalities. Finally those strong inequalities are included in the cutting plane algorithms to solve the general mixed integer problems. We study three mixed integer sets in this dissertation. The first two mixed integer sets arise as a subproblem of the lot-sizing with supplier selection, the network design and the vendor-managed inventory routing problems. These sets are variants of the well-known single node fixed-charge network set where a binary or integer variable is associated with the node. The third set occurs as a subproblem of mixed integer sets where incompatibility between binary variables is considered. We generate families of valid inequalities for those sets, identify classes of facet-defining inequalities, and discuss the separation problems associated with the inequalities. Then cutting plane frameworks are implemented to solve some mixed integer programs. Preliminary computational experiments are presented in this direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study examined the daily surgical scheduling problem in a teaching hospital. This problem relates to the use of multiple operating rooms and different types of surgeons in a typical surgical day with deterministic operation durations (preincision, incision, and postincision times). Teaching hospitals play a key role in the health-care system; however, existing models assume that the duration of surgery is independent of the surgeon's skills. This problem has not been properly addressed in other studies. We analyze the case of a Spanish public hospital, in which continuous pressures and budgeting reductions entail the more efficient use of resources. Methods: To obtain an optimal solution for this problem, we developed a mixed-integer programming model and user-friendly interface that facilitate the scheduling of planned operations for the following surgical day. We also implemented a simulation model to assist the evaluation of different dispatching policies for surgeries and surgeons. The typical aspects we took into account were the type of surgeon, potential overtime, idling time of surgeons, and the use of operating rooms. Results: It is necessary to consider the expertise of a given surgeon when formulating a schedule: such skill can decrease the probability of delays that could affect subsequent surgeries or cause cancellation of the final surgery. We obtained optimal solutions for a set of given instances, which we obtained through surgical information related to acceptable times collected from a Spanish public hospital. Conclusions: We developed a computer-aided framework with a user-friendly interface for use by a surgical manager that presents a 3-D simulation of the problem. Additionally, we obtained an efficient formulation for this complex problem. However, the spread of this kind of operation research in Spanish public health hospitals will take a long time since there is a lack of knowledge of the beneficial techniques and possibilities that operational research can offer for the health-care system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most widely studied protein structure prediction models is the hydrophobic-hydrophilic (HP) model, which explains the hydrophobic interaction and tries to maximize the number of contacts among hydrophobic amino-acids. In order to find a lower bound for the number of contacts, a number of heuristics have been proposed, but finding the optimal solution is still a challenge. In this research, we focus on creating a new integer programming model which is capable to provide tractable input for mixed-integer programming solvers, is general enough and allows relaxation with provable good upper bounds. Computational experiments using benchmark problems show that our formulation achieves these goals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I explore and analyze a problem of finding the socially optimal capital requirements for financial institutions considering two distinct channels of contagion: direct exposures among the institutions, as represented by a network and fire sales externalities, which reflect the negative price impact of massive liquidation of assets.These two channels amplify shocks from individual financial institutions to the financial system as a whole and thus increase the risk of joint defaults amongst the interconnected financial institutions; this is often referred to as systemic risk. In the model, there is a trade-off between reducing systemic risk and raising the capital requirements of the financial institutions. The policymaker considers this trade-off and determines the optimal capital requirements for individual financial institutions. I provide a method for finding and analyzing the optimal capital requirements that can be applied to arbitrary network structures and arbitrary distributions of investment returns.

In particular, I first consider a network model consisting only of direct exposures and show that the optimal capital requirements can be found by solving a stochastic linear programming problem. I then extend the analysis to financial networks with default costs and show the optimal capital requirements can be found by solving a stochastic mixed integer programming problem. The computational complexity of this problem poses a challenge, and I develop an iterative algorithm that can be efficiently executed. I show that the iterative algorithm leads to solutions that are nearly optimal by comparing it with lower bounds based on a dual approach. I also show that the iterative algorithm converges to the optimal solution.

Finally, I incorporate fire sales externalities into the model. In particular, I am able to extend the analysis of systemic risk and the optimal capital requirements with a single illiquid asset to a model with multiple illiquid assets. The model with multiple illiquid assets incorporates liquidation rules used by the banks. I provide an optimization formulation whose solution provides the equilibrium payments for a given liquidation rule.

I further show that the socially optimal capital problem using the ``socially optimal liquidation" and prioritized liquidation rules can be formulated as a convex and convex mixed integer problem, respectively. Finally, I illustrate the results of the methodology on numerical examples and

discuss some implications for capital regulation policy and stress testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this technical report is to present some detailed explanations in order to help to understand and use the Message Passing Interface (MPI) parallel programming for solving several mixed integer optimization problems. We have developed a C++ experimental code that uses the IBM ILOG CPLEX optimizer within the COmputational INfrastructure for Operations Research (COIN-OR) and MPI parallel computing for solving the optimization models under UNIX-like systems. The computational experience illustrates how can we solve 44 optimization problems which are asymmetric with respect to the number of integer and continuous variables and the number of constraints. We also report a comparative with the speedup and efficiency of several strategies implemented for some available number of threads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of key importance to oil and gas companies is the size distribution of fields in the areas that they are drilling. Recent arguments suggest that there are many more fields yet to be discovered in mature provinces than had previously been thought because the underlying distribution is monotonic not peaked. According to this view the peaked nature of the distribution for discovered fields reflects not the underlying distribution but the effect of economic truncation. This paper contributes to the discussion by analysing up-to-date exploration and discovery data for two mature provinces using the discovery-process model, based on sampling without replacement and implicitly including economic truncation effects. The maximum likelihood estimation involved generates a high-dimensional mixed-integer nonlinear optimization problem. A highly efficient solution strategy is tested, exploiting the separable structure and handling the integer constraints by treating the problem as a masked allocation problem in dynamic programming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.