996 resultados para Stiffness Control
Resumo:
This study evaluated the extent to which movement of the lower limbs and pelvis may compensate for the disturbance to posture that results from respiratory movement of the thorax and abdomen. Motion of the neck, pelvis, leg and centre of pressure (COP) were recorded with high resolution in conjunction with electromyographic activity (EMG) of flexor and extensor muscles of the trunk and hip. Respiration was measured from ribcage motion. Subjects breathed quietly, and with increased volume due to hypercapnoca (as a result of breathing with increased dead-space) and a voluntary increase in respiration. Additional recordings were made during apnoea. The relationship between respiration and other parameters was measured from the correlation between data in the frequency domain (i.e. coherence) and from time-locked averages triggered from respiration. In quiet standing, small angular displacements (similar to0.5degrees) of the trunk and leg were identified in raw data. Correspondingly, there were peaks in the power spectra of the angular movements and EMG. While body movement and EMG were coherent with respiration (>0.5), the coherence between respiration and COP displacement was low (
Resumo:
Cardiac remodeling (hypertrophy and fibrosis) and an increased left ventricular diastolic stiffness characterize models of hypertension such as the SHR and DOCA-salt hypertensive rats. By contrast, hyperthyroidism induces hypertrophy and hypertension, yet collagen expression and deposition is unchanged or decreased, whereas diastolic stiffness is increased. We determined the possible role of increased calcium influx in the development of increased diastolic stiffness in hyperthyroidism by administering verapamil (15 mg/[kg(.)d] orally) to rats given triiodothyronine (T-3) (0.5 mg/[kg.d] subcutaneously for 14 d). Administration of T3 significantly increased body temperature (control: 36.7 +/- 0.2 degrees C; T-3: 39.6 +/- 0.2 degrees C), left ventricular wet weight (control: 2.09 +/- 0.02 mg/kg; T-3 3.07 +/- 0.07 mg/kg), systolic blood pressure (control: 128 +/- 5 mmHg; T-3: 156 +/- 4 mmHg), and left ventricular diastolic stiffness (control: 20.6 +/- 2.0; T-3: 28.8 +/- 1.4). Collagen content of the left ventricle was unchanged. Contractile response to noradrenaline in thoracic aortic rings was reduced. Relaxation in response to acetylcholine (ACh) was also reduced in T-3-treated rats, whereas sodium nitroprusside response was unchanged. Verapamil treatment of hyperthyroid rats completely prevented the increased diastolic stiffness and systolic blood pressure while attenuating the increased body temperature and left ventricular weight; collagen content remained unchanged. ACh response in thoracic aortic rings was restored by verapamil. Thus, in hyperthyroid rats, an increased calcium influx is a potential mediator of the increased diastolic stiffness independent of changes in collagen.
Resumo:
This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Resumo:
Increased levels of inflammatory biomarkers such as interleukin-6 (IL-6), 10 (IL-10), 1β (IL-1β), tumor necrosis factor-α (TNF-α) high-sensitivity C-reactive protein (hs-CRP) are associated with arterial stiffness in hypertension. Indeed, resistant hypertension (RHTN) leads to unfavorable prognosis attributed to poor blood pressure (BP) control and target organ damage. This study evaluated the potential impact of inflammatory biomarkers on arterial stiffness in RHTN. In this cross-sectional study, 32 RHTN, 20 mild hypertensive (HTN) and 20 normotensive (NT) patients were subjected to office BP and arterial stiffness measurements assessed by pulse wave velocity (PWV). Inflammatory biomarkers were measured in plasma samples. PWV was increased in RHTN compared with HTN and NT (p < 0.05). TNF-α levels were significantly higher in RHTN and HTN than NT patients. No differences in IL-6 levels were observed. RHTN patients had a higher frequency of subjects with increased levels of IL-10 and IL-1β compared with HTN and NT patients. Finally, IL-1β was independently associated with PWV (p < 0.001; R(2) = 0.5; β = 0.077). RHTN subjects have higher levels of inflammatory cytokines (TNF-α, IL-1β and IL-10) as well as increased arterial stiffness, and detectable IL-1β levels are associated arterial stiffness. These findings suggest that inflammation plays a possible role in the pathophysiology of RHTN.
Resumo:
Exercise is an effective intervention for treating hypertension and arterial stiffness, but little is known about which exercise modality is the most effective in reducing arterial stiffness and blood pressure in hypertensive subjects. Our purpose was to evaluate the effect of continuous vs. interval exercise training on arterial stiffness and blood pressure in hypertensive patients. Sixty-five patients with hypertension were randomized to 16 weeks of continuous exercise training (n=26), interval training (n=26) or a sedentary routine (n=13). The training was conducted in two 40-min sessions a week. Assessment of arterial stiffness by carotid-femoral pulse wave velocity (PWV) measurement and 24-h ambulatory blood pressure monitoring (ABPM) were performed before and after the 16 weeks of training. At the end of the study, ABPM blood pressure had declined significantly only in the subjects with higher basal values and was independent of training modality. PWV had declined significantly only after interval training from 9.44 +/- 0.91 to 8.90 +/- 0.96 m s(-1), P=0.009 (continuous from 10.15 +/- 1.66 to 9.98 +/- 1.81 m s(-1), P-ns; control from 10.23 +/- 1.82 to 10.53 +/- 1.97 m s(-1), P-ns). Continuous and interval exercise training were beneficial for blood pressure control, but only interval training reduced arterial stiffness in treated hypertensive subjects. Hypertension Research (2010) 33, 627-632; doi:10.1038/hr.2010.42; published online 9 April 2010
Resumo:
BACKGROUND Obstructive sleep apnea (OSA) is an established cause of hypertension However, it is not clear whether the frequency of masked hypertension in patients with OSA and whether OSA have an independent role on arterial stiffness taking into account ambulatory blood pressure (BP) monitoring (ABPM) METHODS We evaluated 61 male normotensive participants as determined by casual clinic BP level <140/90 mm Hg without clinical evidence of cardiovascular disease and on no medications (43 patients with moderate-to-severe OSA (apnea-hypopnea index (AHI) >= 15 events/hour by polysomnography) and 18 age- and body mass index-matched controls without OSA (AHl <5 events/hour)) Pulse wave velocity (PWV), an index of arterial stiffness, and 24-h ABPM were performed in a blinded fashion Masked hypertension was defined when abnormal daytime ABPM was >= 135 or >= 85 mm Hg RESULTS The AHI and lowest oxygen saturation were 26 +/- 16 and 90 +/- 2 vs 528 +/- 210 events/hour and 75 +/- 10% for controls and OSA patients, respectively, P < 0 001. Compared with controls, patients with OSA had higher office systolic BP (113 +/- 9 vs 118 +/- 10 mm Hg, P=0 05) and a higher unadjusted proportion of masked hypertension (2 controls (11.1%)vs 13 patients (30 2%), P < 005) PWV was 87 +/- 0.7, 9.4 +/- 1.0, and 10.6 +/- 1.1 m/s in the control, OSA without and with masked hypertension groups, respectively (P < 0 01 for each comparison) Multiple regression showed that systolic daytime ABPM and the lowest oxygen saturation were independently related to PWV (adjusted R(2) = 0 34, P < 0 01) CONCLUSIONS Patients with OSA presented a higher unadjusted rate of masked hypertension than matched controls. Lowest oxygen saturation has an independent association with arterial stiffness
Resumo:
Background Polycystic ovary syndrome (PCOS) is associated with adverse metabolic effects. Some cardiovascular disease (CVD) risk markers are increased in women with PCOS. However, early markers of atherosclerosis are also associated with obesity and insulin resistance, which are related to PCOS. These markers may result either directly from PCOS or indirectly as a consequence of the comorbidities associated with the syndrome. Context To assess the presence of early CVD markers in young, nonobese women with PCOS. Patients Forty women with PCOS and 50 healthy women with regular menstrual cycles, matched for age and body mass index (BMI). Measurements The following CVD markers were assessed by ultrasonography: common carotid artery (CCA) stiffness index (beta), distensibility and intima-media thickness (IMT), and brachial artery flow-mediated dilatation (FMD). Inflammatory markers, including interleukin (IL)-6, tumour necrosis factor (TNF)-alpha, homocysteine, C-reactive protein (CRP), glycaemia, lipid profile and insulin, were also assessed. Results CCA beta was higher in PCOS than in control women (3 center dot 72 +/- 0 center dot 96 vs. 3 center dot 36 +/- 0 center dot 96, P = 0 center dot 04) and CCA distensibility was lower (0 center dot 31 +/- 0 center dot 08 vs. 0 center dot 35 +/- 0 center dot 09 mmHg(-1), P = 0 center dot 02). Waist circumference, total testosterone and the Free Androgen Index (FAI) were higher in PCOS patients than in controls (78 center dot 2 +/- 10 center dot 0 vs. 71 center dot 5 +/- 7 center dot 2 cm, P = 0 center dot 001; 88 center dot 1 +/- 32 center dot 4 vs. 57 center dot 1 +/- 21 center dot 2 ng/dl, P < 0 center dot 01; 12 center dot 7 +/- 15 center dot 7%vs. 4 center dot 7 +/- 2 center dot 3%, P < 0 center dot 01, respectively), while SHBG was reduced (37 center dot 9 +/- 19 center dot 1 vs. 47 center dot 8 +/- 18 center dot 3 nmol/l, P = 0 center dot 01). The remaining variables did not differ between the groups. Conclusions Young women with PCOS exhibit changes in vascular elasticity even in the absence of classical risk factors for CVD, such as hypertension and obesity.
Pamidronate results in symptom control of hypertrophic pulmonary osteoarthropathy in cystic fibrosis
Resumo:
Hypertrophic pulmonary osteoarthropathy (HPOA) may complicate the advanced lung disease that is associated with cystic fibrosis, resulting in severe joint pain and early-morning stiffness. Symptoms are usually controlled with the administration of nonsteroidal anti-inflammatory drugs, physiotherapy, and, on occasions, oral corticosteroids. I This report describes a case of refractory HPOA with complete remission following the administration of IV pamidronate, which is a potent inhibitor of osteoclastic bone resorption. Symptom relief resulted for up to 3 months, but repeated courses of pamidronate have been required to maintain symptom control.
Resumo:
regula a posição do corpo no espaço, sendo um pré-requisito para o movimento. À periferia este processo de Controlo Postural pode ser identificado também através da variação do stiffness. O Acidente Vascular Encefálico apresenta-se como a patologia onde os sujeitos são referenciados como tendo alteração do stiffness, e poderão verificar-se modificações nesta variável no âmbito da reabilitação neuro-motora. Objetivo: Descrever o comportamento do stiffness da tibiotársica, nos dois membros inferiores, em indivíduos pós Acidente Vascular Encefálico, face a uma intervenção em fisioterapia baseada num processo de raciocínio clínico. Métodos: 5 sujeitos participaram no estudo, tendo sido implementado um programa de reabilitação para cada um dos sujeitos, por um período de 3 meses, com 2 momentos de avaliação (M0 e M1). O torque e a amplitude articular da tibiotársica foi monitorizada, através do dinamómetro isocinético, durante o movimento passivo de dorsiflexão, a diferentes velocidades (5º/s, 1º/s e 0,25º/s) A atividade eletromiográfica dos músculos Gastrocnémio Interno e Solear foi também recolhida. O valor de stiffness foi calculado através da relação torque/posição. Resultados: Em todos os sujeitos em estudo verificou-se que de uma forma geral o stiffness do membro contralateral à lesão apresentou uma modificação no sentido da diminuição em todas as amplitudes em M1. Nos sujeitos A e C, verificou-se que o stiffness do membro ipsilateral apresentou uma modificação no sentido da diminuição em M1 (em amplitudes intermédias). Nos sujeitos B, D e E o stiffness não apresentou modificações. O stiffness não variou com a velocidade. Conclusão: O stiffness apontou para uma diminuição, nos sujeitos em estudo no membro contralateral à lesão e no membro ipsilateral à lesão nos sujeitos A e C em amplitudes intermédias.
Resumo:
Introdução: A organização estrutural e funcional do sistema nervoso face à organização dos diferentes tipos de input, no âmbito da intervenção em fisioterapia, pode potenciar um controlo postural para a regulação do stiffness e com repercussões na marcha e no levantar. Objetivo: Descrever o comportamento do stiffness da tibiotársica no movimento de dorsiflexão, no membro inferior ispi e contralesional, em indivíduos após Acidente Vascular Encefálico, face a uma intervenção em fisioterapia baseada num processo de raciocínio clínico. Pretendeu-se também observar as modificações ocorridas no âmbito da atividade electromiográfica dos flexores plantares, gastrocnémio medial e solear, durante a marcha e o levantar. Métodos: Foi implementado um programa de reabilitação em 4 indivíduos com sequelas de AVE por um período de 3 meses, tendo sido avaliados no momento inicial e final (M0 e M1). O torque e a amplitude articular da tibiotársica foi monitorizada, através do dinamómetro isocinético, durante o movimento passivo de dorsiflexão, e o nível de atividade eletromiográfica registado, através de electomiografia de superfície, no solear e gastrocnémio medial. Foram estudadas as fases de aceitação de carga no STS (fase II) e na marcha (sub-fase II). Resultados: Em todos os indivíduos em estudo verificou-se que o stiffness apresentou uma modificação no sentido da diminuição em todas as amplitudes em M1. O nível de atividade eletromiográfica teve comportamentos diferentes nos vários indivíduos. Conclusão: O stiffness apontou para uma diminuição nos indivíduos em estudo entre M0 e M1. Foram registadas modificações no nível de atividade eletromiográfica sem que seja possível identificar uma tendência clara entre os dois momentos para esta variável.
Resumo:
The objective of this contribution is to extend the models of cellular/composite material design to nonlinear material behaviour and apply them for design of materials for passive vibration control. As a first step a computational tool allowing determination of optimised one-dimensional isolator behaviour was developed. This model can serve as a representation for idealised macroscopic behaviour. Optimal isolator behaviour to a given set of loads is obtained by generic probabilistic metaalgorithm, simulated annealing. Cost functional involves minimization of maximum response amplitude in a set of predefined time intervals and maximization of total energy absorbed in the first loop. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Obtained results facilitate the design of elastomeric cellular materials with improved behaviour in terms of dynamic stiffness for passive vibration control.
Resumo:
High speed trains, when crossing regions with abrupt changes in vertical stiffness of the track and/or subsoil, may generate excessive ground and track vibrations. There is an urgent need for specific analyses of this problem so as to allow reliable esimates of vibration amplitude. Full understanding of these phenomena will lead to new construction solutions and mitigation of undesirable features. In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. Results are expressed in terms of vertical displacement. Sensitivity analysis of the response amplitude is also performed. The analytical expressions presented herein, to the authors’ knowledge, have not been published yet. Although related to one-dimensional cases, they can give useful insight into the problem. Nevertheless, in order to obtain realistic response, vehicle- rail interaction cannot be omitted. Results and conclusions are confirmed using general purpose commercial software ANSYS. In conclusion, this work contributes to a better understanding of the additional vibration phenomenon due to vertical stiffness variation, permitting better control of the train velocity and optimization of the track design.
Resumo:
A case-control study was conducted to identify risk factors for death from tetanus in the State of Pernambuco, Brazil. Information was obtained from medical records of 152 cases and 152 controls, admitted to the tetanus unit in the State University Hospital, in Recife, from 1990 to 1995. Variables were grouped in three different sets. Crude and adjusted odds ratios, p-values and 95% confidence intervals were estimated. Variables selected in the multivariate analysis in each set were controlled for the effect of those selected in the others. All factors related to the disease progression - incubation period, time elapsed between the occurrence of the first tetanus symptom and admission, and period of onset - showed a statistically significant association with death from tetanus. Similarly, signs and/or symptoms occurring on admission or in the following 24 hours (second set): reflex spasms, neck stiffness, respiratory signs/symptoms and respiratory failure requiring artificial ventilation (third set) were associated with death from tetanus even when adjusted for the effect of the others.